3. STELLAR ATMOSPHERES

3.1 The Radiation Field - Basic Definitions (2B12)

Normal

To
observer

Fig. 5.1. The geometrical portion of the definition of specific intensity is illust-rated
here. The increment of area, A4, is seen foreshortened by cos6, where 8 is the
angle of view from the normal to the surface. An increment of solid angle, Aw, is

shown.

[From Gray (1995)]

3.1.1 Specific Intensity (J m=2 s=! Hz lstr=1)

Consider a radiating surface as shown above. The specific intensity is the monochromatic inten-
sity or brightness of a beam of radiation observed from some direction (6, ¢) at a point on the

surface and is defined by
dE,
I, = 3.1
Y cosfdAdtdvdw (3:1)
where 6 is the angle between the beam and the normal to the surface, and dE, is the amount

of energy.

Polar coords: dw = sin0dfd¢. 6 runs from 0 to 7 and ¢ from 0 to 27. 8 = 0 along the axis of
symmetry (e.g. polar axis of a rotating star). Often set u = cos. In the plane-parallel case,
there is azimuthal symmetry and I, is then only a function of 6 (or ). The integral of ¢ over
dw is 2.

I, is only measurable directly if the surface is resolved (only possible for the sun). It is usually
obtained from the equation of radiative transfer (see later).

To obtain quantities which relate the radiation field to observables, we need to integrate over
solid angle to give angular averages.

3.1.2 Moments of the Radiation Field - angular averages

(1) Mean Intensity (J m~2s~1Hz 1)

Jy is I, integrated over all solid angles and it represents the brightness irrespective of direction
i.e. it is the directional average of the specific intensity.



$I,dv 1 7{
v = = — Il/ 2
J, o gy dw (3.2)

where ¢ dw = 47. For plane-parallel stellar atmosphere layers (i.e. no curvature):
dw = sin 6dfd¢ (3.3)

and then Lo
Jo= /_1 1, du (3.4)
(2) Fluz (J m~2s 1 Hz 1)

F, is the integral of I, and u over all solid angles. It is a measure of the net flow of energy
perpendicular to dA whose normal makes an angle 6 with respect to the observer, in time dt in
spectral range dv. Flux is a vector. It depends on . Intensity is a scalar.

1
F, = %I,, cos Odw = 277/ I du (3.5)
~1

Flux is often separated into two parts — an ingoing and an outgoing part: F, = Fi 4 Fout,
When the radiation is isotropic, JF, = 0 since Fi* = —Fo". For a stellar atmosphere F.* = 0.
The flux emitted by a stellar disk (i.e. over one hemisphere with § = 0 to 7/2) F, = «l,.
Defining the astrophysical flux as F,, = F, /m, then F,, = I, for a stellar disk.

The Eddington flux H, = =7, and thus (by analogy to J,,)

1 1
H, = f/ Ly dp (3.6)
2/

(3) The Second Order Moment K, (J m~2s~ 1 Hz 1)
K, is often called the “K integral” and physically, it is related to the radiation pressure.
K, 1]{1 20 d 1/11 2 d (3.7)
= — cos = - .
Y dr v YT 1 vie Gl

The radiation pressure P, is given by

1 4
P, =- %L, cos? 0 dw = —WK,, (3.8)
c c

3.1.8 Energy Density U,
1 4
U, = fjfly dw =217, (3.9)
c c



3.1.4 Isotropic Radiation Field (I, is not a function of p)

J, =1, 3.10)
L, =0 (3.11)

1
K, = 3 J, (3.12)

For an isotropic, time-independent radiation field given by the Planck function B, (T")

I, =J,=B,(T). (3.13)
The energy density
4
U, = — B,(T) (3.14)
c
The total energy density
4
U= / T B(T) = aT* (3.15)
c

where a is the radiation constant = 7.56 x 10716 Jm—3 K%

From eqns. (3.8) and (3.12),(3.13) and (3.14) the radiation pressure

1 1
P = /P,, dy = / SUv = §aT4 (3.16)

3.2 Interaction of Radiation and Matter (2B12)

As the beam I, passes through a medium, photons can be created or destroyed. The net change
in the energy gives the change in intensity (eqn 3.1). The study of the change in intensity is
called “radiative transfer”.

3.2.1 Extinction Coefficient and Optical Depth

The energy removed from the radiation field as it passes through a medium of length dx is given
by
dl, = —x, I, dz (3.17)

where Y, is the extinction coefficient or opacity (units m~=!). The I, on the right hand side is
necessary because there has to be some photons to destroy.

Xv = Ky + 0y (3.18)

where

Kk, = absorption coefficient and a photon is destroyed by being absorbed by the material.

0, = scattering coefficient and a photon is scattered out of the beam i.e. energy is removed but
not destroyed.



If 0, is isotropic and equal to zero (i.e. what is scattered out is scattered back in to the beam),
then x, = k.

Confusingly, the extinction coefficient is sometimes written as the mass extinction coefficient
and then has units of m? kg because it is multiplied by the density p. With the definition given
in (3.17), the mean free path is simply 1/x,.

Optical depth

dry, = xp dz (3.19)
dl, = —I,dn, (3.20)
I, = I%exp(—1,) (3.21)

This is an extinction law and measures how far we can see into a stellar atmosphere.
8.2.2 Emission Coefficient and Source Function

The energy added to the radiation field
dl, = j, dx (3.22)

where j, is the emission coefficient for thermal emission (creation of photons).

The source function is defined as )
S, =¥ (3.23)

Ky

In steady state thermal equilibrium (no net gain or loss of energy) and with pure emission and
absorption:
Jv="ry Iy (3.24)

(Kirchoff’s Law)
and with I, = B,(T)
Jv = kuBy(T) (3.25)

(Kirchoff-Planck relation)
and thus
S, = B,(T) (3.26)



