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3. STELLAR ATMOSPHERES

3.1 The Radiation Field - Basic Definitions (2B12)

[From Gray (1995)]

3.1.1 Specific Intensity (J m−2 s−1 Hz−1 str−1)

Consider a radiating surface as shown above. The specific intensity is the monochromatic inten-
sity or brightness of a beam of radiation observed from some direction (θ, φ) at a point on the
surface and is defined by

Iν =
dEν

cos θ dA dt dν dω
(3.1)

where θ is the angle between the beam and the normal to the surface, and dEν is the amount
of energy.

Polar coords: dω = sin θdθdφ. θ runs from 0 to π and φ from 0 to 2π. θ = 0 along the axis of
symmetry (e.g. polar axis of a rotating star). Often set µ = cos θ. In the plane-parallel case,
there is azimuthal symmetry and Iν is then only a function of θ (or µ). The integral of φ over
dω is 2π.

Iν is only measurable directly if the surface is resolved (only possible for the sun). It is usually
obtained from the equation of radiative transfer (see later).

To obtain quantities which relate the radiation field to observables, we need to integrate over
solid angle to give angular averages.

3.1.2 Moments of the Radiation Field - angular averages

(1) Mean Intensity (J m−2 s−1 Hz−1)

Jν is Iν integrated over all solid angles and it represents the brightness irrespective of direction
i.e. it is the directional average of the specific intensity.
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Jν =
∮

Iν dω∮
dω

=
1
4π

∮
Iν dω (3.2)

where
∮

dω = 4π. For plane-parallel stellar atmosphere layers (i.e. no curvature):

dω = sin θdθdφ (3.3)

and then

Jν =
1
2

∫ 1

−1
Iν dµ (3.4)

(2) Flux (J m−2 s−1 Hz−1)

Fν is the integral of Iν and µ over all solid angles. It is a measure of the net flow of energy
perpendicular to dA whose normal makes an angle θ with respect to the observer, in time dt in
spectral range dν. Flux is a vector. It depends on θ. Intensity is a scalar.

Fν =
∮

Iν cos θdω = 2π

∫ 1

−1
Iνµ dµ (3.5)

Flux is often separated into two parts – an ingoing and an outgoing part: Fν = F in
ν + Fout

ν .
When the radiation is isotropic, Fν = 0 since F in

ν = −Fout
ν . For a stellar atmosphere F in

ν = 0.
The flux emitted by a stellar disk (i.e. over one hemisphere with θ = 0 to π/2) Fν = πIν .
Defining the astrophysical flux as Fν = Fν/π, then Fν = Iν for a stellar disk.

The Eddington flux Hν = 1
4πFν and thus (by analogy to Jν)

Hν =
1
2

∫ 1

−1
Iνµ dµ (3.6)

(3) The Second Order Moment Kν (J m−2 s−1 Hz−1)

Kν is often called the “K integral” and physically, it is related to the radiation pressure.

Kν =
1
4π

∮
Iν cos2 θ dω =

1
2

∫ 1

−1
Iνµ

2 dµ (3.7)

The radiation pressure Pν is given by

Pν =
1
c

∮
Iν cos2 θ dω =

4π

c
Kν (3.8)

3.1.3 Energy Density Uν

Uν =
1
c

∮
Iν dω =

4π

c
Jν (3.9)
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3.1.4 Isotropic Radiation Field (Iν is not a function of µ)

Jν = Iν (3.10)

Fν = 0 (3.11)

Kν =
1
3

Jν (3.12)

For an isotropic, time-independent radiation field given by the Planck function Bν(T )

Iν = Jν = Bν(T ). (3.13)

The energy density

Uν =
4π

c
Bν(T ) (3.14)

The total energy density

U =
∫ 4π

c
Bν(T ) = aT 4 (3.15)

where a is the radiation constant = 7.56× 10−16 J m−3 K−4.

From eqns. (3.8) and (3.12),(3.13) and (3.14) the radiation pressure

P =
∫

Pν dν =
∫ 1

3
Uν =

1
3
aT 4 (3.16)

3.2 Interaction of Radiation and Matter (2B12)

As the beam Iν passes through a medium, photons can be created or destroyed. The net change
in the energy gives the change in intensity (eqn 3.1). The study of the change in intensity is
called “radiative transfer”.

3.2.1 Extinction Coefficient and Optical Depth

The energy removed from the radiation field as it passes through a medium of length dx is given
by

dIν = −χνIν dx (3.17)

where χν is the extinction coefficient or opacity (units m−1). The Iν on the right hand side is
necessary because there has to be some photons to destroy.

χν = κν + σν (3.18)

where
κν = absorption coefficient and a photon is destroyed by being absorbed by the material.
σν = scattering coefficient and a photon is scattered out of the beam i.e. energy is removed but
not destroyed.
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If σν is isotropic and equal to zero (i.e. what is scattered out is scattered back in to the beam),
then χν = κν .

Confusingly, the extinction coefficient is sometimes written as the mass extinction coefficient
and then has units of m2 kg because it is multiplied by the density ρ. With the definition given
in (3.17), the mean free path is simply 1/χν .

Optical depth
dτν = χν dx (3.19)

dIν = −Iνdτν (3.20)

Iν = I0
ν exp(−τν) (3.21)

This is an extinction law and measures how far we can see into a stellar atmosphere.

3.2.2 Emission Coefficient and Source Function

The energy added to the radiation field

dIν = jν dx (3.22)

where jν is the emission coefficient for thermal emission (creation of photons).

The source function is defined as
Sν =

jν

κν
(3.23)

In steady state thermal equilibrium (no net gain or loss of energy) and with pure emission and
absorption:

jν = κν Iν (3.24)

(Kirchoff’s Law)
and with Iν = Bν(T )

jν = κνBν(T ) (3.25)

(Kirchoff-Planck relation)
and thus

Sν = Bν(T ) (3.26)


