Quantum Physics — Some part A type revision questions, mostly on the
Schrédinger equation (with solutions)

Al. Let ¢(z) = A(z — a)(x — b) the wavefunction of a particle which is confined to
move freely in the one-dimensional interval —2 < x < 2 (in other words, the potential is
V=0for —2<zx<2and V =00 for x > 2 and 2 < —2). Find a, b and A.

S1. The wavefunction must vanish at the boundary of the interval, i.e. we must impose
¥(2) = ¥(—2) = 0. Hence a = 2 and b = —2. Finally A is obtained from imposing
1= f_22 Y (z)|?, i.e. we must require that

|A|2/ (r—2)%(z+2)?2 = 1.
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This gives (up to an irrelevant, overall phase) A = (15/512)%/2.

A2. Consider a particle which can move in one dimension between —oo and +o00. Explain
why we need ¥(z) — 0 as x — +o00.

S2. The wavefunction must be integrable i.e. we need to be able to impose that
fj:: |4o(x)|? = 1 which in particular implies that the integral must converge! A necessary
condition for the integral to converge is precisely 1 (z) — 0 as x — +o0.

A3. A single slit of length L is irradiated with light of wavelength A. Explain under
which conditions we observe diffraction.

S3. We need the wavelength to be comparable to the size of the slit, i.e. A ~ L.

A4. Explain why the classical concept of “trajectory” of a particle does not make sense
at the quantum level.

S4. Because of Heisenberg’s uncertainty principle, we cannot measure to infinite accuracy
the position and momentum of a particle at the same time. Hence we cannot define its
trajectory! (knowing the trajectory of a particle precisely means knowing position and
momentum of the particle at any time).

A5. Write down the Schrodinger equation for a single particle confined to move freely in
the line interval —L < x < L (in other words, the potential is V' =0 for —L <z < L and
V=00 forz>Land z < —L).
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with the boundary condition (L,t) = ¥(—L,t) = 0, and furthermore ¥ (z,t) = 0 for
x < —Lor x > L. Remember to write down the boundary conditions, which are part of

the equation itself!

A6. Write down a one-dimensional plane wave as a function of p and E. What are the
relations of p and F to w and k7

i(px—Et)

S6. Ygeo(x,t) = e 7 . The relations are p = ik and E = Juw are the two (de Broglie)
relations. In terms of w and k the plane wave has the form (familiar from optics) e?#=«?).
Also remember that T'= 27 /w and k = 27/ \.

AT7. Check that the plane wave is a solution to the Schrodinger equation for a free
non-relativistic particle.

S7. You can indeed very easily check that
n* 0?2
 2m dx?

i(pr—FEt)

with Ygeo(z,t) = e # . What you find is (E — p?/(2m))tbgec(x, t) = 0, which is indeed
satisfied because for a free non-relativistic particle E(p) = p*/(2m).
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AB8. Define what are the stationary states for the Schrédinger equation.

S8. These are the solutions to the time-independent Schrodinger equation

P ) = Bule)

2m 0x?

where F is a parameter with the dimensions of an energy. The importance of stationary
states is that if ¢)(z) is a stationary state, we can write at once a solution to the time-
dependent Schrodinger equation, as
_iBEt
U(z,t) = e ().

This represents a state with a definite energy, equal to E. Typically, the energies are
discrete and we call E, the discrete allowed values for the energies, and 1™ the corre-
sponding stationary states which solve the time-independent Schrodinger equation with
E=F,,ie.

_h_28_2 ™ (z) = E,p™ ()

2m Ox?



Note that a linear combination of stationary states, i.e. Y. ¢, (z) is not a stationary
state (it does not have a definite energy).

A9. Write down the time evolution of 3 ¢, 0™ (z).
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S9. It is given by > c,e” i ™ (z).

A10. Prove the very important fact that coe” ™ (2) 1S a solution to the time-
dependent Schrodinger equation.

S10. You do not need a calculation to show this, if you make the following considerations.
1. Each term in the sum e_ZETnth(")(x) is a solution to the time-dependent Schrodinger
equation. 2. The Schrodinger equation is linear and homogeneous. Hence, any linear
combination of solutions is another solution.

Of course you can also easily check directly that e ™ (x) satisfies the time-
dependent Schrodinger equation (and it is a good exercise to convince yourself that this
is indeed the case).

A1l. For a particle on a segment (i.e. the potential is zero on the segment and in-
finity outside), consider a wavefunction of the form ¢(z) = oo™ H ™ (x), which

we assume to be normalised. (™ are the (normalised) stationary states, i.e. ¥™(z) =

\/2/Lsin(mnz/L), withn =1,2,....

a. What condition do the coefficients ¢, need to satisfy in order for the wavefunction to
be normalised?

b. What is the probability of measuring a certain value Ej of the energy?
c. What is the average value of the energy in this state?
S11.

a. Weneed 1 = > |c,|* . You arrive at this result by imposing 1 = fOL dx |¢(x)* and
using fOL dx (p™)*pm) = gmn,

b. The probability of measuring E; among the possible values if |c;|?.

c. It is

(B) = ) leal’En
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(this is just the average but weighted with the probabilities!)

A12. Write down the normalisation condition for the wavefunction who can move in the
one dimensional interval a < z < b.

S12. [Ydr > = 1.

A13. State Heisenberg’s uncertainty principle for a particle which can move in one
dimension.

S13. The uncertainty for a measurement performed at the same time on the position and
the momentum of a particle must satisfy the bound

AzAp > h/2 .

So if we know x very precisely, then the uncertainty on p, Ap, is very large; and viceversa.

A.14 Find the the Broglie wavelength of an electron of energy £ =10 eV. Can one use a
non-relativistic approximation?

S14. The mass of the electron is m, ~ 0.5 MeV/c? and E/(m.c?) = 10/(0.5 x 10°) < 1,
hence we can use a non-relativistic approximation. Then

h B 2mhe B 2mhe 2mhe 2 x 197

Ade Broglie = — = = ~ fermi ~ 3.9110 '%m,
de Broe! pc V2mEc  V2mc2E V2 x 0.5 x 10 x 106

where we have used £ = p?/(2m) and he ~ 197MeV-fermi (1 fermi = 107'%m).



