
Quantum Physics – Some part A type revision questions, mostly on the
Schrödinger equation (with solutions)

A1. Let ψ(x) = A(x − a)(x − b) the wavefunction of a particle which is confined to
move freely in the one-dimensional interval −2 ≤ x ≤ 2 (in other words, the potential is
V = 0 for −2 ≤ x ≤ 2 and V =∞ for x > 2 and x < −2). Find a, b and A.

S1. The wavefunction must vanish at the boundary of the interval, i.e. we must impose
ψ(2) = ψ(−2) = 0. Hence a = 2 and b = −2. Finally A is obtained from imposing

1 =
∫ 2

−2 ψ(x)|2, i.e. we must require that

|A|2
∫ 2

−2
(x− 2)2(x+ 2)2 = 1 .

This gives (up to an irrelevant, overall phase) A = (15/512)1/2.

A2. Consider a particle which can move in one dimension between −∞ and +∞. Explain
why we need ψ(x)→ 0 as x→ ±∞.

S2. The wavefunction must be integrable i.e. we need to be able to impose that∫ +∞
−∞ |ψ(x)|2 = 1 which in particular implies that the integral must converge! A necessary

condition for the integral to converge is precisely ψ(x)→ 0 as x→ ±∞.

A3. A single slit of length L is irradiated with light of wavelength λ. Explain under
which conditions we observe diffraction.

S3. We need the wavelength to be comparable to the size of the slit, i.e. λ ∼ L.

A4. Explain why the classical concept of “trajectory” of a particle does not make sense
at the quantum level.

S4. Because of Heisenberg’s uncertainty principle, we cannot measure to infinite accuracy
the position and momentum of a particle at the same time. Hence we cannot define its
trajectory! (knowing the trajectory of a particle precisely means knowing position and
momentum of the particle at any time).

A5. Write down the Schrödinger equation for a single particle confined to move freely in
the line interval −L ≤ x ≤ L (in other words, the potential is V = 0 for −L ≤ x ≤ L and
V =∞ for x > L and x < −L).
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S5.

− ~2

2m

∂2

∂x2
ψ(x, t) = i~

∂

∂t
ψ(x, t) ,

with the boundary condition ψ(L, t) = ψ(−L, t) = 0, and furthermore ψ(x, t) = 0 for
x < −L or x > L. Remember to write down the boundary conditions, which are part of
the equation itself!

A6. Write down a one-dimensional plane wave as a function of p and E. What are the
relations of p and E to ω and k?

S6. ψfree(x, t) = e
i(px−Et)

~ . The relations are p = ~k and E = ~ω are the two (de Broglie)
relations. In terms of ω and k the plane wave has the form (familiar from optics) ei(kx−ωt).
Also remember that T = 2π/ω and k = 2π/λ.

A7. Check that the plane wave is a solution to the Schrödinger equation for a free
non-relativistic particle.

S7. You can indeed very easily check that

− ~2

2m

∂2

∂x2
ψfree(x, t) = i~

∂

∂t
ψfree(x, t) ,

with ψfree(x, t) = e
i(px−Et)

~ . What you find is (E − p2/(2m))ψfree(x, t) = 0, which is indeed
satisfied because for a free non-relativistic particle E(p) = p2/(2m).

A8. Define what are the stationary states for the Schrödinger equation.

S8. These are the solutions to the time-independent Schrödinger equation

− ~2

2m

∂2

∂x2
ψ(x) = Eψ(x)

where E is a parameter with the dimensions of an energy. The importance of stationary
states is that if ψ(x) is a stationary state, we can write at once a solution to the time-
dependent Schrödinger equation, as

ψ(x, t) = e−
iEt
~ ψ(x) .

This represents a state with a definite energy, equal to E. Typically, the energies are
discrete and we call En the discrete allowed values for the energies, and ψ(n) the corre-
sponding stationary states which solve the time-independent Schrödinger equation with
E = En, i.e.

− ~2

2m

∂2

∂x2
ψ(n)(x) = Enψ

(n)(x)
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Note that a linear combination of stationary states, i.e.
∑

n cnψ
(n)(x) is not a stationary

state (it does not have a definite energy).

A9. Write down the time evolution of
∑

n cnψ
(n)(x).

S9. It is given by
∑

n cne
− iEnt

~ ψ(n)(x).

A10. Prove the very important fact that
∑

n cne
− iEnt

~ ψ(n)(x) IS a solution to the time-
dependent Schrödinger equation.

S10. You do not need a calculation to show this, if you make the following considerations.
1. Each term in the sum e−

iEnt
~ ψ(n)(x) is a solution to the time-dependent Schrödinger

equation. 2. The Schrödinger equation is linear and homogeneous. Hence, any linear
combination of solutions is another solution.

Of course you can also easily check directly that
∑

n cne
− iEnt

~ ψ(n)(x) satisfies the time-
dependent Schrödinger equation (and it is a good exercise to convince yourself that this
is indeed the case).

A11. For a particle on a segment (i.e. the potential is zero on the segment and in-

finity outside), consider a wavefunction of the form ψ(x) =
∑

n cne
− iEnt

~ ψ(n)(x), which
we assume to be normalised. ψ(n) are the (normalised) stationary states, i.e. ψ(n)(x) =√

2/L sin(πnx/L), with n = 1, 2, . . ..

a. What condition do the coefficients cn need to satisfy in order for the wavefunction to
be normalised?

b. What is the probability of measuring a certain value Ek of the energy?

c. What is the average value of the energy in this state?

S11.

a. We need 1 =
∑

n |cn|2 . You arrive at this result by imposing 1 =
∫ L

0
dx |ψ(x)|2 and

using
∫ L

0
dx (ψ(n))∗ψ(m) = δmn.

b. The probability of measuring Ek among the possible values if |ck|2.

c. It is
〈E〉 =

∑
n

|cn|2En
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(this is just the average but weighted with the probabilities!)

A12. Write down the normalisation condition for the wavefunction who can move in the
one dimensional interval a ≤ x ≤ b.

S12.
∫ b

a
dx |ψ|2 = 1 .

A13. State Heisenberg’s uncertainty principle for a particle which can move in one
dimension.

S13. The uncertainty for a measurement performed at the same time on the position and
the momentum of a particle must satisfy the bound

∆x∆p ≥ ~/2 .

So if we know x very precisely, then the uncertainty on p, ∆p, is very large; and viceversa.

A.14 Find the the Broglie wavelength of an electron of energy E =10 eV. Can one use a
non-relativistic approximation?

S14. The mass of the electron is me ∼ 0.5 MeV/c2 and E/(mec
2) = 10/(0.5× 106)� 1,

hence we can use a non-relativistic approximation. Then

λde Broglie =
h

p
=

2π~c
pc

=
2π~c√
2mEc

=
2π~c√
2mc2E

∼ 2π × 197√
2× 0.5× 10× 10−6

fermi ∼ 3.9110−10m,

where we have used E = p2/(2m) and ~c ∼ 197MeV·fermi (1 fermi = 10−15m).
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