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1 From classical physics to quantum physics

1.1 Brief introduction to the course

• The end of classical physics: 1. Planck’s quantum hypothesis (blackbody radi-
ation, specific heat of gases). 2. The particle behaviour of light (photoelectric
effect; Compton scattering). 3. The wave behaviour of particles.

• Classical instability of matter.

• Orders of magnitudes of some lengths.

• Particles and waves.

1.2 Review of classical mechanics [Krane 1]

• Lecture 1. Frame, velocity, acceleration. The concept of “trajectory” of a par-
ticle.

• Newton’s second law (ṗ = F), conservation of momentum. Conservation of
energy.

• Examples of potentials: gravitational potential, harmonic oscillator.

• The harmonic oscillator in detail. Solution to the equation of motion. Angular
frequency. Frequency. Period. Average position of the oscillating particle.

• Expansion around the equilibrium position for an arbitrary one-dimensional
potential. The importance of harmonic oscillations.
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1.3 Review of relativistic kinematics [Krane 2]

• Lectures 2-3. Lorentz transformations. Transformation of the velocities between
frames. The speed of light c is constant.

• Velocity and momentum, p = mγv with γ := 1/
√

1− v2/c2 and v = |v|.
Energy. E2/c2 = p2 +m2c2.

• Approximation for v/c� 1. Relativistic approximation, E ∼ |~p|c.

1.4 Mini-review of electromagnetism [Krane 3]

• Lecture 4. Maxwell equations in vacuum. Wave solutions. Wave number k and
wavelength λ, with k = 2π/λ; frequency ω, period T = 2π/ω. [Krane 3.1]

1.5 Blackbody radiation and the quantum hypoyhesis
[Krane 3, Bransden-Joachain 1]

• Lecture 5. Thermal radiation. Emissive power (power emitted per unit area
from a blackbody with wavelengths between λ and λ + dλ) dR = R(λ, T )dλ.
Total power emitted per unit area R(T ) =

∫∞
0
dλR(λ, T ).

• Stefan-Boltzmann’s law, R(T ) = σT 4, where σ is the Stefan-Boltmann con-
stant. Wien displacement law for the position λmax of the maximum of the
curve R(λ, T ), λmaxT = b = constant.

• Equipartition of energy and Rayleigh-Jeans derivation of R(λ, T ) based on
classical physics: the ultraviolet catastrophe!

• Planck’s quantisation hypothesis: the energy of an oscillator is quantised, E =
nε0 where n = 0, 1, . . . .

• Planck’s new formula for R(λ, T ): R(λ, T ) = (2πhc2/λ5) · 1/
(
e
hc
λkT − 1

)
.

• Using Wien’s displacement law, derivation of ε0: E = hc/λ, where h is Planck’s
constant. Alternatively: E = ~ω = hν where ~ := h/(2π).

• Lecture 6. Derivation of Wien’s displacement constant from Planck’s formula
for the spectrum of the radiation.
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• No ultraviolet catastrophe: derivation of Stefan’s law from Planck’s formula
for the spectrum of the radiation.

• Rayleigh-Jeans formula as a limit of Planck’s formula for large wavelentghs.

1.6 A related failure of classical mechanics: specific heats of
gases

• Lecture 7. For a gas, the quantity of heat ∆Q needed to raise its temperature
by ∆T is ∆Q = mc∆T where m is the mass of the gas, and c is the specific
heat of the gas. Mean kinetic energy: 〈E〉 = (3/2)KBT for one particle, where
kB ∼ 1.38× 10−23J/K is Boltzmann’s constant. Equipartition of energy: each
degree of freedom contributes 1/2kBT to the mean energy.

• Specific heat for a mole of gas: c1mole
V = (3/2)NAk := (3/2)R where NA =

6.02× 1023 is Avogadro’s number and R = 8.31J/(mole K).

• Failure of our prediction based on classical physics for the specific heat of
biatomic gases, e.g. Iodine I2. Further failure: specific heats depend on tem-
perature!

1.7 The particle behaviour of light

• Lecture 8-9 Photoelectric effect. Plot of the intensity of the current as a
function of the potential V0. Stopping potential, maximum kinetic energy
of the emitted electrons. Einstein’s explanation of the photoelectric effect.
(1/2)mev

2
max = hν −W , where ν is the frequency of the light and W is the

work function of the metal. Millikan’s measure of h/e: from the slope of the
plot of V0 = (h/e)ν −W/e.

• Lecture 10. Compton effect. Derivation of the difference λ′ − λ = h/(mc) (1−
cos θ), where λ and λ′ are the wavelengths of the incident and outgoing light,
and θ is the angle between the direction of the incident and the outgoing light
(photon).

1.8 The wave behaviour of light and matter

• Lectures 11-12. Review of interference phenomena of light. Interference from
a double slit (Young’s experiment). Diffraction from a single slit of size a. We
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can observe diffraction when λ ∼ a, i.e. when the wavelength is of the same
order of magnitude of the size of the slit. If λ � a, we are in the realm of
geometric optics and we can ignore diffraction. In other words: λ → 0: no
diffraction. Classical limit.

• Lecture 13. Young’s experiment redone: diffraction and interference between
two slits in the approximation d� a where d=distance of the two slits and a is
the size of one slit. Derivation of the interference + diffraction figure. Distance
between the fringes.

• Lecture 14. de Broglie’s waves. λdeBroglie := h/p where h is Planck’s constant
and p is the momentum of the particle. Examples of de Broglie wavelengths for
different objects – microscopic ones (such as electrons etc) as well as macro-
scopic. The limit h→ 0 is the classical limit.

1.9 Wave-particle duality

• Lecture 15 (and 16). An experiments with bullets. An experiment with water
waves. An experiment with electrons.

• Lecture 17. The interference pattern is destroyed whenever we try to observe
which slit the electron has passed through. When we do not observe which slit
the electron has passed through, we cannot say that the electron pass either
through one slit or the other!

• Heisenberg’s uncertainty principle. First example: electron going through a
single slit. Loss of the concept of “trajectory” of a particle.

• What can we observe? The wavefunction. Introducing the superposition prin-
ciple using the double-slit experiment.

2 Quantum mechanics

2.1 The wavefunction

• Born’s probabilistic interpretation of the wavefunction: |ψ(x, t)|2d3x is the
probability of finding the particle in an infinitesimal volume d3x := dx dy dz
around the point x. Normalisation of the wavefunction:

∫
V
d3x |ψ(x, t)|2 =

1, where V is the volume where the system is contained. Square-integrable
functions.
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• Lecture 18. Statement of the superposition principle. If ψ1 and ψ2 are two
wavefunctions describing the same system, then any linear combination ψ =
c1ψ1 + c2ψ2 will also be a possible wavefunction, with c1 and c2 being constant
(complex) numbers.

• Irrelevance of the overall phase of the wavefunction. Relevance of the relative
phase between ψ1 and ψ2 in ψ = c1ψ1+c2ψ2: if ψ1 := eiα1|ψ1| and ψ2 := eiα2|ψ2|,
then |ψ|2 = |ψ1|2 + |ψ2|2 + 2|ψ1||ψ2| cos(α1 − α2).

2.2 Examples of wavefunctions

• Plane waves as solutions for the free particle. Extending the relations valid
for photons E = ~ω and p = ~k, with ω(k) = cp and E(p) = cp to other
particles using de Broglie ideas: we still write E = ~ω and p = ~k but now
ω = ω(k) and E = E(p) will be functions of k and p to be specified later.
From E = E0 exp [i(kx− ωt)] to ψ(x, t) = A exp [i(px− Et)/~] (plane waves).
Three-dimensional generalisation: ψ(x, t) = A exp [i(p · x− E(p)t)/~].

• The momentum and energy operators for the free particle (plane wave):
−i~ ∂

∂x
ψ(x, t) = pxψ(x, t) and i~ ∂

∂t
ψ(x, t) = Eψ(x, t) where the plane-wave

solution is ψ(x, t) = A exp [i(pxx − Et)/~]. Three-dimensional generalisation:
−i~∇ψ(x, t) = p̂ψ(x, t).

Reading week (week 7)

• Week 8, Lectures 19-21. Revision of plane wave solutions. Revision of the mo-
mentum operator and energy operator. In three dimensions: p̂ = −i~∇.

• Example of solution of a typical problem: normalisation of the wavefunction.
Expectation value of x. Most probable value of x.

• A plane wave is not normalisable. Relative probability. Wavepackets. Phase
velocity of a plane wave. Group velocity of a wave packet. The group velocity
is equal to the particle velocity. Study of a generic wavepacket (but peaked
around a particular momentum). Representation as Fourier transforms. The
gaussian wave-packet. Explicit calculation of the Fourier transform of a gaus-
sian wavepacket. Time evolution of the spread of a wavepacket. Examples
(microscopic and macroscopic objects).
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3 The Schrödinger equation [Krane, Bransden-Joachain]

• Week 9, Lecture 22. Time-dependent Schrödinger equation for a free particle.
Generalisation to the case of a particle in a potential V (x) (in one dimension):
i~ ∂

∂t
ψ(x, t) = − ~2

2m
d2

dx2
ψ(x, t).

• Properties of the Schrödinger equation: 1. linearity and homogeneity: the
mathematical implementation of the superposition principle. 2. The equation
is first order in the time derivatives – it is enough to know the wavefunction at
the time t = 0 in order to know it at all times t > 0.

• The time-independent Schrödinger equation. Separation of variables. Energy
eigenfunctions and energy eigenvalues. Ĥψ = Eψ (the energy eigenfunctions
are often called “stationary states”).

• Week 10, Lecture 23-24. Particle on a line segment 0 ≤ x ≤ L, i.e. V (x) = 0
for 0 ≤ x ≤ L and V = ∞ for x < 0 and x > L. Boundary conditions: the
wavefunction must vanish at the endpoint of the segment. Solutions for the
energy eigenvalues: En = [~2π2/(2mL2)]n2, where n = 1, 2, . . .. Solution for the
eigenfunctions: ψ(n)(x) =

√
2/L sin(πnx/L). Overlap of energy eigenfunctions:∫ L

0
dx (ψ(n)(x))∗ψ(m)(x) = δnm.

• Expectation value of x and of p for different wavefunctions. In particular, if
ψ = ψ(n), then 〈x〉ψ(n) = L/2 and 〈p〉ψ(n) = 0.

• Calculation of ∆x := (〈x2〉 − 〈x〉2)1/2 and ∆p := (〈p2〉 − 〈p〉2)1/2 and check of
Heisenberg’s uncertainty principle ∆x∆p ≥ ~/2.

• Collapse of the wavefunction. (New) normalisation of the wavefunction after
the measurement.

• Wavefunctions which are linear combinations of energy eigenfunctions and their
time evolution. Probability of measuring a certain value of the energy: if
the system is in a state described by the wavefunction ψ =

∑
n cnψ

(n) where
Hψ(n) = Enψ

(n), and the ψ(n) are normalised, then the expectation value (or
average value) of the energy is equal to 〈E〉 =

∑
n |cn|2En (used in many

problems!).

• Lecture 25. Solution of many typical problems (see the homework assignments
and the summary questions you can find on the website).
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4 Momentum in quantum mechanics

• Lectures 26-27. Fourier transforms. Dirac delta function. Wavefunction in mo-
mentum space φ(p) and its normalisation. Expectation value of the momentum:
〈p〉 =

∫ +∞
−∞ p |φ(p)|2 =

∫ +∞
−∞ ψ∗(x)(−i ~ d/dx)ψ(x), and hence the momentum

px is represented by −i ~ d/dx.

• Lecture 28. One more motivation for the identification px → −i ~ d/dx: Ehren-
fest’s theorem: using the time-dependent Schödinger equation we computed
d/dt (m〈x〉) and we found that d/dt (m〈x〉) =

∫ +∞
−∞ ψ∗(x)(−i ~ d/dx)ψ(x).

5 Bohr’s model of the hydrogen atom

• Energy levels (stationary states). Frequencies of the radiation emitted/absorbed
in the transition between different energy levels.

6 Other applications

• Particle in a three-dimensional box. Solution for the energy levels and the
stationary states.

Books

The main textbook for this course is:

1. K. Krane, Modern Physics (3rd edition), John Wiley & Sons.

A more advanced, very nice book, which is adopted in subsequent modules on Quan-
tum Mechanics is:

2. B. H. Bransden and C. J. Joachain, Quantum Mechanics, (2nd edition). Chap-
ters 1, 2, 3 (and part of 4 ) are very useful also for this course.

Finally, a book which has inspired generations of physicists is:

3. R. P. Feynman, The Feynman Lectures on Physics, volume III: Quantum Me-
chanics. Chapters 1, 2 are a strongly recommended reading.
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