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CHAPTER 8 

HEAT CAPACITY, AND THE EXPANSION OF GASES 
 

 
 
8.1   Heat Capacity 
 
Definition:  The heat capacity of a body is the quantity of heat required to raise its temperature by 
one degree.  Its SI unit is J K−1. 
 
Definition:  The specific heat capacity of a substance is the quantity of heat required to raise the 
temperature of unit mass of it by one degree.  Its SI unit is J kg−1 K−1. 
 
Definition:  The molar heat capacity of a substance is the quantity of heat required to raise the 
temperature of a molar amount of it by one degree.  (I say "molar amount". In CGS calculations we 
use the mole – about 6 × 1023 molecules.  In SI calculations we use the kilomole – about 6 × 1026 
molecules. )   Its SI unit is J kilomole−1 K−1. 
 
Some numerical values of specific and molar heat capacity are given in Section 8.7.  
 
One sometimes hears the expression "the specific heat" of a substance.  One presumes that what is meant is the specific 
heat capacity. 
 
The above definitions at first glance seem easy to understand – but we need to be careful.  Let us 
imagine again a gas held in a cylinder by a movable piston.  I choose a gas because its volume can 
change very obviously on application of pressure or by changing the temperature.  The volume of a 
solid or a liquid will also change, but only by a small and less obvious amount.  If you supply heat 
to a gas that is allowed to expand at constant pressure, some of the heat that you supply goes to 
doing external work, and only a part of it goes towards raising the temperature of the gas.  On the 
other hand, if you keep the volume of the gas constant, all of the heat you supply goes towards 
raising the temperature.  Consequently, more heat is required to raise the temperature of the gas by 
one degree if the gas is allowed to expand at constant pressure than if the gas is held at constant 
volume and not allowed to expand.   Thus the heat capacity of a gas (or any substance for that 
matter) is greater if the heat is supplied at constant pressure than if it is supplied at constant 
volume.  Thus we have to distinguish between the heat capacity at constant volume CV and the heat 
capacity at constant pressure CP, and, as we have seen CP  >  CV. 
 
If the heat is added at constant volume, we have simply that dU  =  dQ  =  CV dT. 
 
One other detail that requires some care is this.  The specific heat capacity of a substance may well 
vary with temperature, even, in principle, over the temperature range of one degree mentioned in 
our definitions.  Therefore, we really have to define the heat capacity at a given temperature in 
terms of the heat required to raise the temperature by an infinitesimal amount rather than through a 
finite range.  Thus it is perhaps easiest to define heat capacity at constant volume in symbols as 
follows: 
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(Warning:  Do not assume that .)/( PP TUC ∂∂=   That isn’t so.  The correct expression is given as 
equation 9.1.13  in Chapter 9 on Enthalpy.) 
 
As with many equations, this applies equally whether we are dealing with total, specific or molar 
heat capacity or internal energy. 
 
If heat is supplied at constant pressure, some of the heat supplied goes into doing external work 
PdV, and therefore 
 
         C dT C dT P dVP V= + .     8.1.2 
 
For a mole of an ideal gas at constant pressure, P dV  =  R dT, and therefore, for an ideal gas, 
 
     C C RP V= + ,     8.1.3 
 
where, in this equation, CP and CV are the molar heat capacities of an ideal gas. 
 
We shall see in Chapter 10, Section 10.4, if we can develop a more general expression for the 
difference in the heat capacities of any substance, not just an ideal gas.  But let us continue, for the 
time being with an ideal gas. 
 
In an ideal gas, there are no forces between the molecules, and hence no potential energy terms 
involving the intermolecular distances in the calculation of the internal energy. In other words, the 
internal energy is independent of the distances between molecules, and hence the internal energy is 
independent of the volume of a fixed mass of gas if the temperature (hence kinetic energy) is kept 
constant.  That is, for an ideal gas, 
 

           .0=







∂
∂

TV
U      8.1.4 

 
Let us think now of a monatomic gas, such as helium or argon.  When we supply heat to (and raise 
the temperature of) an ideal monatomic gas, we are increasing the translational kinetic energy of 
the molecules.  If the gas is ideal, so that there are no intermolecular forces then all of the 
introduced heat goes into increasing the translational kinetic energy (i.e. the temperature) of the 
gas.  (Recall that a gas at low pressure is nearly ideal, because then the molecules are so far apart 
that any intermolecular forces are negligible.)  Recall from Section 5.5 that the translational kinetic 
energy of the molecules in a mole of gas is 3

2 RT .  The molar internal energy, then, of an ideal 
monatomic gas is 
 
     U RT= +3

2 constant.    8.1.5 
 
From equation 8.1.1, therefore, the molar heat capacity at constant volume of an ideal monatomic 
gas is 
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         C RV = 3

2 .       8.1.6 
 
The molar heat capacities of real monatomic gases when well above their critical temperatures are 
indeed found to be close to this. 
 
When we are dealing with polyatomic gases, however, the heat capacities are greater.  This is 
because, when we supply heat, only some of it goes towards increasing the translational kinetic 
energy (temperature) of the gas.  Some of the heat goes into increasing the rotational kinetic energy 
of the molecules.  (Wait!  Some of you are asking yourselves:  "But do not atoms of helium and 
argon rotate?  Do they not have rotational kinetic energy?"  These are very good questions, but I am 
going to pretend for the moment that I haven't heard you.  Perhaps, before I come to the end of this 
section, I may listen.) 
 
When two molecules collide head on, there is an interchange of translational kinetic energy 
between them.  But if they have a glancing collision, there is an exchange of translational and 
rotational kinetic energies.  If millions of molecules are colliding with each other, there is a 
constant exchange of translational and rotational kinetic energies.  When a dynamic equilibrium has 
been established, the kinetic energy will be shared equally between each degree of translational and 
rotational kinetic energy.  (This is the Principle of Equipartition of Energy.)   We know that the 
translational kinetic energy per mole is 3

2 RT  - that is, 1
2 RT  for each translational degree of freedom 

( 1
2

1
2

1
2mu m mw2 2 2, ,v ).  There is an equal amount of kinetic energy of rotation (with an exception 

to be noted below), so that the internal energy associated with a mole of a polyatomic gas is 3RT 
plus a constant, and consequently the molar heat capacity of an ideal polyatomic gas is 
 
      CV  =  3R.     8.1.7 
 
It takes twice the heat to raise the temperature of a mole of a polyatomic gas compared with a 
monatomic gas. 
 
The exception we mentioned is for linear molecules.   These are molecules in which all the atoms 
are in a straight line.  This necessarily includes, of course, all diatomic molecules (the oxygen and 
nitrogen in the air that we breathe) as well as some heavier molecules such as CO2, in which all the 
molecules (at least in the ground state) are in a straight line. (The molecule H2O is not linear.)  In 
linear molecules, the moment of inertia about the internuclear axis is negligible, so there are only 
two degrees of rotational freedom, corresponding to rotation about two axes perpendicular to each 
other and to the internuclear axis.  Thus there are five degrees of freedom in all (three of translation 
and two of rotation) and the kinetic energy associated with each degree of freedom is 1

2 RT  per 
mole for a total of 5

2 RT  per mole, so the molar heat capacity is 
       
        C RV = 5

2 .      8.1.8 
 
    Summary:  A monatomic gas has three degrees of translational freedom and none of rotational 
freedom, and so we would expect its molar heat capacity to be 3

2 R. 
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 A diatomic or linear polyatomic gas has three degrees of translational freedom and two of 
rotational freedom, and so we would expect its molar heat capacity to be 5

2 R. 
 
A nonlinear polyatomic gas has three degrees of translational freedom and three of rotational 
freedom, and so we would expect its molar heat capacity to be 3R. 
 
How do real gases behave compared with these predictions?  The monatomic gases (helium, neon, 
argon, etc) behave very well.  The diatomic gases quite well, although at room temperature the 
molar heat capacities of some of them are a little higher than predicted, while at low temperatures 
the molar heat capacities drop below what is predicted.  Indeed below about 60 K the molar heat 
capacity of hydrogen drops to about 3

2 R  - just as if it had become a monatomic gas or, though still 
diatomic, the molecules were somehow prevented from rotating.  The molar heat capacities of 
nonlinear polyatomic molecules tend to be rather higher than predicted. 
 
First let us deal with why the molar heat capacities of polyatomic molecules and some diatomic 
molecules are a bit higher than predicted.  This is because the molecules may vibrate. When we add 
heat, some of the heat is used up in increasing the rate of rotation of the molecules, and some is 
used up in causing them to vibrate, so it needs a lot of heat to cause a rise in temperature 
(translational kinetic energy).  The possibility of vibration adds more degrees of freedom, and 
another 1

2 R  to the molar heat capacity for each extra degree of vibration.  To be strictly correct, the 
"number of degrees of freedom" in this connection is the number of squared terms that contribute to 
the internal energy.  Each vibrational mode adds two such terms – a kinetic energy term and a 
potential energy term. This means that the predicted molar heat capacity for a nonrigid diatomic 
molecular gas would be 7

2 R.  Polyatomic gases have many vibrational modes and consequently a 
higher molar heat capacity. 
 
So – why is the molar heat capacity of molecular hydrogen not 7

2 R  at all temperatures?  Why is it 
about 5

2 R  at room temperature, as if it were a rigid molecule that could not vibrate?  True, at higher 
temperatures the molar heat capacity does increase, though it never quite reaches 7

2 R  before the 
molecule dissociates.  Why does the molar heat capacity decrease at lower temperatures, reaching 
3
2 R  at 60 K, as if it could no longer rotate? 
 
Let us ask some further questions, which are related to these.  We said earlier that a monatomic gas 
has no rotational degrees of freedom.  Why not?  True, the moment of inertia is very small, but, if 
we accept the principle of equipartition of energy, should not each rotational degree of freedom 
hold as much energy as each translational degree of freedom?  Also, we said that a linear molecule 
has just two degrees of freedom.  It is true that the moment of inertia about the internuclear axis is 
very small.  This is not the same thing as saying that it cannot rotate about that axis.  If all degrees 
of freedom equally share the internal energy, then the angular speed about the internuclear axis 
must be correspondingly large. 
 
Now I could make various excuses about these problems.  The fact is, however, that the classical 
model that I have described may look good at first, but, when we start asking these awkward 
questions, it becomes evident that the classical theory really fails to answer them satisfactorily.  In 
truth, the failure of classical theory to explain the observed values of the molar heat capacities of 
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gases was one of the several failures of classical theory that helped to give rise to the birth of 
quantum theory.  Quantum theory in fact accounts spectacularly well and in detail for the specific 
heat capacities of molecules and how the heat capacities vary with temperature.  This topic is often 
dealt with on courses on statistical thermodynamics, and I just briefly mention the explanation here.  
The solution of Schrödinger's equation for a rigid rotator shows that the rotational energy can exist 
with a number of separated discrete values, and the population of these rotational energy levels is 
governed by Boltzmann's equation in just the same way as the population of the electronic energy 
levels in an atom.  At temperatures of 60 K, the spacing of the rotational energy levels is large 
compared with kT, and so the rotational energy levels are unoccupied.  Thus, in that very real sense, 
the hydrogen molecule does indeed stop rotating at low temperatures.  The spacing of the energy 
level is inversely proportional to the moment of inertia, and the moment of inertia about the 
internuclear axis is so small that the energy of the first rotational energy level about this axis is 
larger than the dissociation energy of the molecule, so indeed the molecule cannot rotate about the 
internuclear axis.   Vibrational energy is also quantised, but the spacing of the vibrational levels is 
much larger than the spacing of the rotational energy levels, so they are not excited at room 
temperatures.   This has been only a brief account of why classical mechanics fails and quantum 
mechanics succeeds in correctly predicting the observed heat capacities of gases.   It is a very 
interesting subject, and the reader may well want to learn more about it – but that will have to be 
elsewhere. 
    
 
8.2  Ratio of the Heat Capacities of a Gas 
 
The ratio of the heat capacities of a gas at constant pressure and at constant volume plays an 
important part in many calculations involving the expansion and contraction of gases.  The ratio 
appears, for one example of many that could be chosen, in the theoretical expression for the speed 
of sound in a gas.  The higher the ratio CP/CV, the faster the speed of sound.  The ratio is generally 
given the symbol γ: 
 

      C
C

P

V

= γ .     8.2.1 

 
Apart from any other reason, one reason for its importance is that the ratio is easier to measure 
precisely than either heat capacity separately.  For example, you could determine it from a 
measurement of the speed of sound, which is easier than adding heat to a sample of gas at constant 
pressure and again at constant volume and measuring the rise in temperature.  
 
We have seen that, for gases that behave as we would like them to behave, the molar heat capacities 
CV at constant temperatures for monatomic, diatomic and nonlinear polyatomic gases without 
molecular vibration are respectively 3

2
5
2 3R R R, and .  And since, for an ideal gas, C C RP V= + , 

(equation 8.1.3), we expect the corresponding values for CP to be 5
2

7
2 4R R R, .and  Thus the 

expected values of γ are 5/3, 7/5 and 4/3. 
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8.3   Reversible Isothermal Expansion of an Ideal Gas 
 
An ideal gas obeys the equation of state  PV = RT (V = molar volume), so that, if a fixed mass of 
gas  kept at constant temperature is compressed or allowed to expand, its pressure and volume will 
vary according to PV = constant.  That is, Boyle's Law.   We can calculate the work done by a mole 
of an ideal gas in a reversible isothermal expansion from volume V1 to volume V2 as follows. 
 

      )./ln( 12
2

1

2

1
VVRT

V
dVRTdVPW V

V
V
V =∫=∫=   8.3.1 

 
 
8.4   Reversible Adiabatic Expansion of an Ideal Gas 
 
An adiabatic process is one in which no heat enters or leaves the system, and hence, for a reversible 
adiabatic process the first law takes the form dU P dV= − .  But from equation 8.1.1, 

.)/( VV TUC ∂∂=   But the internal energy of an ideal gas depends only on the temperature and is 
independent of the volume (because there are no intermolecular forces), and so, for an ideal gas, 

,/ dTdUCV =  and so we have .dTCdU V=   Thus for a reversible adiabatic process and an ideal 
gas, C dT P dVV = − . (The minus sign shows that as V increases, T decreases, as expected.) But 
for a mole of an ideal gas, PV RT C C TP V= = −( ) ,  or P C C T VP V= −( ) / .   
 
Therefore    C dT C C T dV VV P V= − −( ) / .    8.4.1 
 
(You may be wondering whether C and V are molar, specific or total quantities.  If you look at the 
equation you'll agree that it is valid whether the volume and heat capacities are molar, specific or 
total.) 
 
Separate the variables and write γ for CP/CV: 
 

     dT
T

dV
V

+ − =( ) .γ 1 0      8.4.2 

 
Integrate:          TV γ − =1 constant .    8.4.3 
 
This shows how temperature and volume of an ideal gas vary during a reversible adiabatic 
expansion or compression. If the gas expands, the temperature goes down.  If the gas is 
compressed, it becomes hot.  Of course the pressure varies also, and the ideal gas conforms to the 
equation PV/T = constant.  On elimination of T we obtain 
 
          PV γ = constant .     8.4.4 
 
On elimination of V we obtain 
 
          P T− − =( )γ γ1 constant .    8.4.5 
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In figure VIII.1 I draw, as light curves, five isotherms – i.e. the paths that would be taken by an 
ideal gas in the PV plane in isothermal processes at five temperatures.  I also show, as a heavier 
line, an adiabat, PV γ = constant ,  which I calculated for γ = 5/3.  The adiabat is steeper than the 
isotherms, and the curve shows that, as the gas expands adiabatically, the temperature drops.  If you 
know the original temperature and the old and new volumes, equation 8.4.3 will enable you to 
calculate the new temperature.  If you know the original temperature and the old and new pressures, 
equation 8.4.5 will enable you to calculate the new temperature.  While these purely 
thermodynamic arguments show that a gas becomes hotter if you compress it, this is also to be 
expected at the microscopic level.  Thus, if a molecule bounces elastically against a piston that is 
moving towards it, it will gain kinetic energy, and it will lose kinetic energy if it bounces off a 
piston that is moving away from it.  
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Let us calculate the work done by a mole of an ideal gas in a reversible adiabatic expansion from 
(P1 , V1) to (P2 , V2): 
 

     ∫= 2

1

.
V

V
dVPW      8.4.6 

 
For a reversible adiabatic expansion, PVγ = K, and therefore 
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That is,     .
1

)(
1

212211

−γ
−

=
−γ
−

=
TTRVPVPW         8.4.8 

(Note that T2 <  Tl in this adiabatic expansion.) 
Compare this with equation 8.3.1 for an isothermal expansion. 
Note also that, since ,/and γ=−= VPVP CCCCR  this can also be written 

).( 21 TTCW V −=       8.4.9 
This is also equal to the heat that would be lost if the gas were to cool from T1 to T2 at constant 
volume.  Think about this!  Is it coincidence, or must it be so? 
 
Here is a useful exercise.  In figure VIII.2, a gas goes from (P1 , V1) to (P2 , V2) via three different 
reversible routes: 
 

(a) An isobaric expansion followed by an isochoric decrease in pressure; 
(b) An isochoric decrease in pressure followed by an isobaric expansion; 
(c) An adiabatic expansion. 
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At each stage, calculate the work done on or by the gas, the heat gained by the gas or lost from the 
gas, and the increase or decrease of the internal energy of the gas.  This exercise will illustrate that 
U is a function of state, but Q and W are not.  (I expect the answers to be in algebra;  ignore the 
numbers on the axes – they don’t mean anything in particular.) 
 
 
8.5  The Clément-Desormes Experiment 
 
This is a simple, quick and effective experiment often seen in teaching laboratories for measuring γ 
for air, or, with some extra effort, any other gas. 
 
Sometimes this experiment is referred to as the experiment of Clément and Desormes, and sometimes as the experiment 
of Clément-Desormes.  Apparently Charles-Bernard Desormes was the uncle of Nicolas Clément, and they both 
worked on the experiment.  Nicolas Desormes later legally changed his name to Nicolas Clément-Desormes.  Thus you 
can refer either to the experiment of Clément and Desormes or to the experiment of Clément-Desormes! 
 
A bottle of air starts at P1, T1.  Pl is a little greater than atmospheric pressure P0 .  T1 is the ambient 
room temperature. The bottle is provided with some device for measuring pressure (for example, a 
manometer).  We'll see that there is no need to measure temperatures. The stopcock is quickly 
opened and immediately closed.  The pressure at that moment is just atmospheric pressure, which 
I'll call P0, and the temperature is T2, which is a little cooler than the original room temperature T1.  
The bottle of gas is now allowed slowly to warm up isochorically to its original temperature Tl, by 
which time the new pressure P2 is greater than atmospheric pressure P0 but not as large as the 
original pressure P1.  You should sketch these two stages on a PV diagram. 
 
For the adiabatic process,   .2

)1(
01

)1(
1

γ−γ−γ−γ− = TPTP    8.5.1 
 
For the isochoric process,   P T P T0 2 2 1/ / .=     8.5.2 
 
I'll leave you to do the algebra and eliminate T T2 1/  from these equations and hence show that 
 

      γ =
ln( / )
ln( / )

.P P
P P

1 0

1 2

    8.5.3 

 
In the above analysis, we assumed that the gas was ideal and the expansion was adiabatic and 
reversible.   The gas is nearly ideal if it is a long way above its critical temperature and there are no 
enormous ranges of P and T. The expansion is adiabatic if P2 is measured immediately after the 
stopcock is opened and closed, so that there is no time for heat to enter or leave the system.  It is 
reversible only if P P P1 0 0− << . 
 
If you want to do the experiment yourself right now without getting up from your comfortable seat, 
have a look at http://www.univ-lemans.fr/enseignements/physique/02/thermo/clement.html 
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8.6 The Slopes of Isotherms and Adiabats 
 
For an ideal gas in an isothermal process, PV = constant. 
 
In a reversible adiabatic process: 
 
PV γ  =  constant,  TV γ − 1  =  constant,  P 1 − γT γ  =  constant. 
 
From these it is easy to see that the ratios of the adiabatic, isothermal, isobaric and isochoric slopes 
are as follows: 
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            8.6.1a,b,c 

For example: -   isothermal:  PV = constant.  Take logarithms and differentiate:  .0=+
V
dV

P
dP    Hence  
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∂    The other two relations can be obtained in a similar manner. 

 
Do these relations hold in general for any equation of state, or are they valid only for an ideal gas?  
In this section, we shall see that they are valid in general for any equation of state, and are not 
restricted to the equation of state for an ideal gas. 
 
Let us imagine that the state of the working substance (be it gas, liquid or solid) starts in PVT space 
at point A (P, V, TA).  We are going to take it to a new point B .),,( BTVVPP δ+δ+  As I have 
drawn it in Figure VIII.3, δP is positive,  δV is negative, and .AB TT >  
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Pressure 

Volume 

A  ),,( ATVP  

B  ),,( BTVVPP δ+δ+  C ),,( CTVPP δ+  

FIGURE VIII.3 
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We first suppose that we make this move by a single, adiabatic process.  In that case no heat is 
added to or lost from the system, and the increase in the internal energy is −PδV. 
 
Alternatively, B can be reached in two stages: 
   An isochoric path from A to a new point C ),,( CTVPP δ+ , followed by 
   An isobaric path from C to B.  
As I have drawn it in Figure VIII.3, .ABC TTT >>  
 
In the isochoric process, no work is done by or on the system, and the increase in the internal 
energy is equal to the heat added to the system, .)( AC TTCV −    
In the isobaric process, the increase in the internal energy is equal to the work done on the system, 
−PδV,  minus the heat  lost from the system, ;)( BC TTCP −  that is, .)( BC VPTTCP δ−−−  
 
Therefore, since the total increase in internal energy is route-independent, 
 
   .)()( BCAC VPTTCTTCVP PV δ−−−−=δ−    8.6.2 
 
Cancel PδV and write γ for CP/CV, so that 
 
     .)()( BCAC TTTT −γ=−     8.6.3 
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[Reminder:  Here δP means AC PP − (which, in the way in which I have drawn it in figure VIII.3, 
is positive) and δV means CB VV − (which, in the way in which I have drawn it in figure VIII.3, is 
negative).] 
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Divide both sides by δV and go to the infinitesimal limit, recalling that δP and δV are related 
through an adiabatic path: 
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Thus, as for the ideal gas, the slope of the adiabat is γ times the slope of the isotherm, only this time 
we have made no assumption about the equation of state. 
 
The other two relations (equations 8.6.1 b,c) can be dealt with as follows. 
 
Equation 8.6.3 can be rearranged to read 
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which is the same as equation 8.6.1 b, but without any assumption about the equation of state. 
 
Note also that 
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Combine this with equations 8.6.7 and 8.6.9 to obtain 
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which is the same as equation 8.6.1 c, but without any assumption about the equation of state. 
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8.7   Scale Height in an Isothermal Atmosphere 
 
The material in this chapter doubtless has countless applications, most of which I am unaware of, in 
meteorology.  Two simple topics are easy to mention, namely the scale height in an isothermal 
atmosphere, dealt with in this section, and the adiabatic lapse rate dealt with in the next section. 
 
Let us imagine a column of air of cross-sectional area A in an isothermal atmosphere – that is to say 
the temperature T is uniform throughout.   Consider the equilibrium of  
the portion of the air between heights z  and  .dzz +   The weight of this 
portion is .gAdzρ   Let P be the pressure at height z and dPP +  be the 
pressure at height .dzz +  (Note that dP is negative.)  The net upward force  
on the portion dz of the air is −AdP.    Therefore .gdzdP ρ−=  
But if we regard air as an ideal gas, it obeys the equation of state for an  
ideal gas, equation 6.1.7:   ,/ µρ= RTP  where ρ and µ are  
respectively the density and the “molecular weight”  (molar mass) 

of the gas.  Therefore ,gdzdRT
ρ−=ρ

µ
  or .dz

RT
gd µ

−=
ρ
ρ  

Integrate to obtain ,/ Hze−ρ=ρ   8.7.1 

where 
g

RTH
µ

=  is the scale height.  It is large if the 

 
temperature is high, the gas light and the planet’s gravity  
feeble.  It is the height at which the density is reduced to a fraction 1/e, or 36.8%. of its ground 
value. What would it be, in kilometres, for an atmosphere consisting of 80% N2 and 20% O2, at a 
temperature of 20 ºC, where the gravitational acceleration is 9.8 m s−2?  What fraction is this of the 
radius of Earth?   If you made a model of Earth one metre in diameter (radius = 50 cm), how thick 
would be the atmosphere?  You’d better look after it -  our atmosphere is a very thin skin clinging 
to the surface! 
 
 
8.8   Adiabatic Lapse Rate 
 
Earth’s atmosphere is not, of course, isothermal.  The temperature decreases with height. The 
temperature lapse rate in an atmosphere is the rate of decrease of temperature with height;  that is 
to say, it is ./ dzdT−     
 
An adiabatic atmosphere is one in which γρ/P  does not vary with height.  In such an atmosphere, 
if a lump of air is moved adiabatically to a higher level, its pressure and density will change so that 

γρ/P  is constant – and will be equal to the ambient pressure and density at the new height.  For 
such an atmosphere, it is possible to calculate the rate at which temperature decreases with height – 
the adiabatic lapse rate.  We shall do this calculation, and see how it compares with actual lapse 
rates. 
 
As in Section 8.7, the condition for hydrostatic equilibrium is 

A 

z 

dz 

FIGURE VIII.4 
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    .gdzdP ρ−=        8.8.1 
 
   Since we are trying to find a relation between T and z for an adiabatic atmosphere (i.e. one in 
which γρ/P  doesn’t vary with height), we need to find the adiabatic relations between P and T and 
between ρ and T. 
 
   These are easily found from the adiabatic relation between P  and ρ: 
 
    γρ= cP        8.8.2 
 
and the ideal gas equation of state: 
 

    .
µ

ρ
=

RTP        8.8.3 

 
Eliminate P: 
 

    .
)1/(1 −γ





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c
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Eliminate ρ: 
 

    ,)1/(
)1/(1)1/(
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−γγ

−γ−γγ

−γγ

µ
= T

c
RP      8.8.5 

 

from which   .
1

)1/(1
)1/(1)1/(

)1/(

dTT
c

RdP −γ
−γ−γγ

−γγ

µ−γ
γ

=    8.8.6 

 
Substitute equations (8.8.4) and (8.8.6) into equation (8.8.1), to obtain, after a little algebra, the 
following equation for the adiabatic lapse rate: 
 
 

    .11
R
g

dz
dT µ









γ

−=−       8.8.7 

 
This is independent of temperature. 
 
If you take the mean molar mass for air to be 28.8 kg kmole−1, and g to be 9.8 m s−2 for temperate 
latitudes, you get for the adiabatic lapse rate for dry air −9.7 K km−1.  The presence of water vapour 
in humid air reduces the mean value of µ (and hence the adiabatic lapse rate), and actual lapse rates 
are usually rather less than the calculated adiabatic lapse rates even for humid air. (The presence of 
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water vapour also increases slightly the value of γ.  This would result in a slightly larger lapse rate, 
but the effect is not as great as the reduction in lapse rate caused by the larger value of µ.  Try some 
numbers to convince yourself of this.) The International Civil Aviation Organization Standard 
Atmosphere takes the lapse rate in the troposphere (first 11 km) to be −6.3 K km−1.    What happens 
if the actual lapse rate is faster than the adiabatic lapse rate?  If you imagine a lump of air to be 
moved adiabatically to a higher level, its pressure and density will change so that γρ/P  is constant, 
and it will then find itself in a region where its new density is less that the new ambient density.  
Consequently, it will continue to rise, and the atmosphere will be convectively unstable, and a 
storm will ensue.  The atmosphere is stable as long as the actual lapse rate is less than the adiabatic 
lapse rate (which is reduced in humid air) is unstable if the actual lapse rate is greater than the 
adiabatic lapse rate.    
 
 
 
8.9   Numerical Values of Specific and Molar Heat Capacities 
 
The following table is not intended as a definitive, authoritative table of precise heat capacities.  It 
is intended just to give a rough idea of the orders of magnitude and the relative magnitudes for a 
few substances. 
 
For gases, the heat capacities tabulated are at constant pressure.  For solids and liquids the 
difference between Cp and Cv is much smaller than for gases, because of the much smaller 
coefficient of expansion.  Notice that the molar heat capacities for gases, when expressed in terms 
of R, are about what are expected from the theoretical considerations in this chapter.  Notice the 
relatively large molar heat capacities of organic liquids (the molecules can rotate and can vibrate in 
many modes), and that, the more complex the molecule, the larger its molar heat capacity.  Notice, 
however, that, because water has a low molecular weight (molar mass), water has the largest 
specific heat capacity of any common liquid or solid. (The specific heat capacities of gaseous H2 
and He are, unsurprisingly, larger still.  A kilogram of hydrogen is an enormous number of 
molecules, so it takes a lot of heat to warm them all up.)  We have not studied the theory of the heat 
capacities of solids in this chapter, but, when you do so in a course on solid state physics or on 
statistical mechanics, you will understand that the expected molar heat capacity of metals would be 
about 3R, which is approximately what is shown for the three metals in this table. 
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   Specific Heat Capacity   Molar Heat Capacity 
    at Constant Pressure    at Constant Pressure 
 
               cal g−1 Cº −1       J kg−1 K−1                        J kmole−1 K−1       In units of R 
 
Helium       (g)  1.25  5250    21000      2.53 R 
 
Argon         (g)  0.13    526    21000      2.53 R 
 
H2        (g)  3.44           14400    28800      3.46 R 
 
O2        (g)  0.22    919    29400      3.54 R 
 
N2        (g)  0.25  1040    29100      3.50 R 
 
CO2           (g)  0.20                   843                  37100      4.46 R 
 
H2O           (l)  1  4184    75300      9.1   R 
 
C2H5OH    (l)  0.58  2430             112000               13.5  R 
 
CCl4       (l)  0.20    852             131000    15.8  R 
 
C6H6         (l)  0.42                 1740             136000    16.4 R 
 
Al      (s)  0.22    941               25400                  3.1 R 
 
Cu             (s)  0.092                 384               24400      2.9 R 
 
Fe             (s)  0.11                   450                                        25100                  3.0 R     
 
 
8.10 Heat Capacities of Solids 
 
I do not deal a great deal with solid state physics in these notes, particularly in this chapter, which 
has been concerned mostly with gases.  But the inclusion of the heat capacities of three metals in 
the above table provides an opportunity for a brief mention of the heat capacities of metals and of 
other crystalline solids.  In a simple model of a crystalline solid, the solid can be thought of as a 
regular lattice of atoms held in position near their neighbours by springs, and the atoms have three 
degrees of vibrational freedom – in the x, y and z directions.  For each of these vibrational modes 
there are two squared terms (of the form 2

2
1 vm  and 2

2
1 ωI ) that contribute to the internal energy.   

The internal energy associated with each of these six terms is RT2
1 per mole, which comes to 3RT 

per mole, and thus you would expect the molar heat capacity to be about 3R – and you can see from 
the above table that this is indeed the case.  Indeed at room temperature, most metals and simple 
crystalline solids have a molar heat capacity of about 3R.  (This is sometimes referred to as 
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“Dulong and Petit’s Rule”.)  At low temperatures, however, the molar heat falls below this value, 
and eventually approaches zero at 0 K.  At very low temperatures, the molar heat capacity varies 
roughly as the cube of the temperature.  As room temperatures are reached, the molar heat capacity 
asymptotically approaches the “classical” value of 3R.    
 
.   The run of molar heat capacity with temperature at low temperatures looks a little like figure 
VIII.5 for magnesium and figure VIII.6 for silver bromide.   It will be seen that these two curves 
are the same shape except for a different scale along the temperature axis – and the same is true for 
most metals and simple crystalline solids.  Indeed we can assign to each solid a characteristic 
temperature, known as the Debye temperature, θD, and then, if we express temperature not in 
kelvin but in units of the Debye temperature for the particular solid, then the curves are indeed the 
same shape.  In other words, the molar heat capacity of all solids (or at least all solids that behave 
like this!) is the same function of D/ θT .  I show this function as figure VIII.7. 
 
   The theory of the heat capacities of solids was investigated by Einstein and by Debye.  (Peter 
Debye – Dutch-American physicist/chemist.  Nobel Chemistry prize 1936.)  The Debye 
temperature is related to the vibrational frequency of the atoms in their crystalline lattice.  Diamond 
is a very hard substance, with very strong interatomic bonds.  Consequently the vibrational 
frequencies are very high, and the Debye temperature for diamond is correspondingly high: 

.K1860D =θ   As a result of this the heat capacity rises very slowly with increasing temperature, 
and at room temperature is well below the “classical” value of 3R.  Most other solids have weaker 
bonds and far lower Debye temperatures, and consequently their molar heat capacities have almost 
reached the classical Dulong-Petit value of 3R at room temperature.  Here are a few Debye 
temperatures: 
 
 Potassium:                 100  K 
 Silver bromide           145  
Silver   215 
Magnesium    290 
Copper   315 
Iron   420 
 
If it seems that the harder the solid the higher the Debye temperature and the slower the solid is to 
reach its classical CV of 3R, this is not coincidence. 
 
   I do not derive Debye’s theoretical formula here – it is something to look forward to in courses on 
solid state physics or statistical mechanics, but, for interest, the formula (which I used for 
calculating figures VIII.5-7) is 

.
)1(

9
/1

0 2

4
3 dx

e
exTC

T

x

x

V ∫ −
=              8.9.1 

In this equation CV is in units of R, and T is in units of the Debye temperature. 
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In case you are wondering what the symbol “x” stands for in equation 8.9.1, it is merely a dummy variable, for the 
integral in that expression is a function not of x but of T, the upper limit of the integral.  If you try to reproduce figure 
VIII.7 yourself by evaluating equation 8.9.1 for a number of different temperatures, you will soon find that it is a good 
deal more laborious than may at first be evident.  Thus, for each value of T that you choose, you will have to do a 
numerical integration in order to evaluate CV.  When I prepared figure 8.9.1, I used 400 values of T in order to make the 
graph nice and smooth and I evaluated each of the 400 integrals for 1000 values of x in order to do the numerical 
integration accurately..  These 400,000 calculations took the computer almost half a second.  Admittedly the program I 
used was a very inefficient one, and I could have got the computer to do the calculation in milliseconds if I had spent 
another half-hour or so programming it to do so!  (That would be a more efficient use of the computer’s time, but a less 
efficient use of mine!)   Debye’s theory was published in 1912, and they certainly didn’t have electronic computers, or 
even electronic hand calculators, in those days.   In the 1950s most scientists were using hand-operated mechanical 
calculators, with electrically-driven mechanical calculators beginning to come into use towards the end of that decade.  
I suspect that in 1912 not even hand-operated mechanical calculators were available, and calculations would have been 
done using pencil and paper and logarithm and other tables.  One must think of the physical insight and mathematical 
competence needed to develop the theory of the heat capacity in the first place, and then the enormous effort needed to 
calculate the resulting equations. 


