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CHAPTER 16 
NERNST’S HEAT THEOREM AND THE THIRD LAW OF 

THERMODYNAMICS 
 

16.1 Nernst’s Heat Theorem 
 
At the beginning of the twentieth century, Walther Nernst (Nobel Prize in Chemistry 
1920) had investigated heat capacities and heats of reaction at progressively lower 
temperatures.  As a result of his studies, he enunciated an important principle that initially 
was restricted to the behaviour of reactions involving solids and liquids but which is now 
believed to apply to all processes and substances. 
 
The subject of chemical thermodynamics is dealt with more fully in Chapter 17, but for 
the present we shall note that some chemical reactions require an input of heat to initiate 
them; other chemical reactions generate heat.  The former are known as endothermic 
reactions; the latter are exothermic reactions.  If the reaction takes place at constant 
pressure (i.e. on an open laboratory bench) the heat gained or lost is an increase or 
decrease in enthalpy H.  The heat of reaction is usually given as ∆H, being positive for an 
endothermic reaction (in which the system gains heat) and negative for an exothermic 
reaction.  It should be noted that spontaneous reactions are by no means always 
exothermic; some spontaneous reactions result in the absorption of heat from their 
surroundings and in a corresponding increase of enthalpy. 
 
Nernst had noticed that, at progressively lower temperatures, the change in enthalpy and 
the change in the Gibbs function during a chemical reaction become more and more 
equal.  And (as we shall see, what amounts to the same thing) the rate of change of the 
Gibbs function with temperature becomes less and less as the temperature is lowered.  
That this amounts to the same thing is evident from the Gibbs-Helmholtz relation 
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What Nernst proposed was that, in the limit, as the temperature approaches zero, the 
changes in the enthalpy and Gibbs function are equal – or, what amounts to the same 
thing, the temperature rate of change of the Gibbs function at constant pressure 
approaches zero at zero temperature.  And since 
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this implies that chemical reactions at a temperature of absolute zero take place with no 
change of entropy.  This is Nernst’s Heat Theorem. 
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Planck later extended this to suppose that, not only does  ,HG ∆→∆  but that, as ,0→T  
the enthalpy and the Gibbs function of the system approach each other asymptotically in 
such a manner that, in the limit, as .0)/(and,0 →∂∂→→ PTGHGT  
 
This has a number of consequences.  For example, until now, we had defined only what 
is meant by a change in entropy.  In particular, in order to state what the entropy of a 
system is at some temperature, we would need to know what the entropy is at a 
temperature of zero kelvin.  In Sections 12.8 and 12.9 we attempted to calculate the 
change in the Helmholtz and Gibbs functions as a system was changed from one state to 
another.  We found that the right hand sides of equations 12.9.9 and 12.9.11 for 
calculating the changes in these functions contained the entropy.  We later went on to 
show how we could calculate the difference in entropy in some state to that at zero 
temperature, but there was still a matter of an arbitrary constant, namely – what is the 
entropy at zero temperature?  We now have the answer, resulting from the observed 
behaviour of ][)/( STG P −=∂∂ as the temperature approaches zero – namely that the 
arbitrary constant is no longer arbitrary, and the entropy approaches zero as the 
temperature approaches zero. 
 
Another consequence is 
 
 
16.2 The Third Law of Thermodynamics 
 
Nernst’s heat theorem and Planck’s extension of it, while originally derived from 
observing the behaviour of chemical reactions in solids and liquids, is now believed to 
apply quite generally to any processes, and, in view of that, it is time to reconsider our 
description of adiabatic demagnetization.  We see immediately that figure XV.1 needs to 
be redrawn to reflect the fact that the entropy of the substance approaches zero whether 
or not it is situated in a magnetic field.  The revised drawing is shown as figure XVI.1, in 
which I have drawn three consecutive magnetization-demagnetization operations, and it 
will be readily seen that we shall never reach a temperature of exactly zero in a finite 
number of operations. 
 
The same applies to any operation in which we attempt to lower the temperature by a 
series of isothermal constraints that decrease the entropy followed by adiabatic 
relaxations – whether we are compressing a gas isothermally and then decompressing it 
adiabatically, or stretching a rubber band isothermally and loosening it adiabatically.  In 
all cases, owing to the convergence of the two entropy curves at zero temperature, we are 
led to conclude: 
 
It is impossible to reduce the temperature of a material body to the absolute zero of 
temperature in a finite number of operations. 
 
This is the Third Law of Thermodynamics, and it is an inevitable consequence of Planck’s 
extension of Nernst’s Heat Theorem. 
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This is usually taken to mean that it is impossible ever to reduce the temperature of 
anything to absolute zero.  From a practical point of view, that may be true, though that is 
not strictly what the third law says.  It says that it is impossible to do it in a finite number 
of operations.  I cannot help but think of a bouncing ball (see Classical Mechanics 
Chapter V), in which the ball bounces an infinite number of times before finally coming 
to rest after a finite time.  After every bounce, there are still an infinite number of 
bounces yet to come, yet it is all over in a final time.  Now, perhaps some reader of these 
notes one day will devise a method of performing an infinite number of isothermal 
stress/adiabatic relaxation operations in a finite time, and so attain absolute zero. 
 
The third law also talks about a finite number of operations – by which I take it is meant 
operations such as an entropy-reducing constraint followed by an adiabatic relaxation.  I 
am not sure to what extent this applies to processes such as laser cooling.  In such 
experiments a laser beam is directed opposite to an atomic beam.  The laser frequency is 
exactly equal to the frequency need to excite the atoms to their lowest excited level, and 
so it stops the atoms in their tracks.  As the atoms slow down, the required frequency can 
be changed to allow for the Doppler effect.  Such experiments have reduced the 
temperature to a fraction of a nanokelvin. These experiments do not seem to be of the sort 
of experiment we had in mind when developing the third law of thermodynamics.  We 
might well ask ourselves if it is conceptually possible or impossible to reduce the speeds 
of a collection of atoms to zero for a finite period of time. We might argue that it is 
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conceptually possible – but then we may remember that atoms attract each other (van der 
Waals forces), so, if all the atoms are instantaneously at rest, they will not remain so. Of 
course if we had an ideal gas (such as a real gas extrapolated to zero pressure!) such that 
there are no forces between the molecules, the concept of zero temperature implies that 
all the atoms are stationary – i.e. each has a definite position and zero momentum.  This 
is, according the Heisenberg’s uncertainty principle, inconceivable.   So I leave it open as 
a subject for lunchtime conversations exactly how strictly the third law prevents us from 
ever attaining the absolute zero of temperature. 
 
Exercise.  If the kinetic temperature of a set of hydrogen atoms is reduced to a tenth of a 
nanokelvin, what is the root-mean-square speed of the atoms? 
 
 
 
  
 


