
 1

CHAPTER 17 
CHEMICAL THERMODYNAMICS 

 
 

17.1   Equilibrium Constant 
 
There are many types of chemical reaction, but to focus our attention we shall consider a 
reaction involving two reactants A and B which, when mixed, form two resultants C and 
D.  The reaction will proceed at a certain rate (fast or slow), and the rate at which the 
reaction proceeds is part of the subject of chemical kinetics, which is outside the scope of 
this chapter, and to some extent, though by no means entirely, outside the scope of this 
writer!  We shall not, therefore, be concerned with how fast the reaction proceeds, but 
with what the final state is, and whether the reaction needs some heat to get it going, or 
whether it proceeds spontaneously and generates heat as it does so. 
 
We shall suppose that the reaction is reversible.  That is, that either  
 
    A  +  B  →  C  +  D     17.1.1 
 
or    C  +  D  →  A  +  B     17.1.2 
 
is possible. 
 
That is    A  +  B  ↔ C  +  D.     17.1.3 
 
The end result is a dynamic equilibrium in which the rates of forward and backward 
reaction are the same, and there is an equilibrium amount of A, of B, of C and of D.  The 
question is:  How much of A?  Of B?  Of C?  Of D? 
 
Let us suppose that in the equilibrium mixture there  are NA moles of A, NB of B, NC of C 
and ND of D.  If we make the reasonable assumption that the rate of the forward reaction 
is proportional to NANB and the rate of the backward reaction is proportional to NCND, 
then, when equilibrium has been achieved and these two rates are equal, we have 
 

    ".constant"=
DC

BA

NN
NN      17.1.4 

 
The “constant”, which is called the equilibrium constant for the reaction, is constant only 
for a particular temperature; in general it is a function of temperature. 
 
A simpler type of reaction is the dissociation-recombination equilibrium of a diatomic 
molecule: 
 
    AB  ↔  A  +  B.     17.1.5 
 
The dissociation equilibrium constant is then 
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    .
AB

BA

N
NN       17.1.6 

 
This “constant” is a function of the temperature and the dissociation energy of the 
molecule. 
 
A similar consideration obtains for the ionization of an atom: 
 
    A  ↔  A+  +  e−.     17.1.7 
 

In this situation,        
0N
NN −+ ,      17.1.8 

 
the ionization equilibrium constant, is a function of the temperature and the ionization 
energy.  The equilibrium constants can be determined either experimentally or they can 
be computed from the partition functions of statistical mechanics.  Some details of how 
to calculate the dissociation and ionization constants and how to use them to calculate the 
numbers of atoms, ions and molecules of various species in a hot gas are discussed in 
Stellar Atmospheres, Chapter 8, as well as in papers by the writer in Publ. Dom. 
Astrophys. Obs., XIII (1) (1966) and by A. J. Sauval and the writer in  Astrophys. J. 
Supp., 56, 193 (1984). 
 
 
17.2   Heat of Reaction 
 
In some reactions, heat is produced by the reaction, and such reactions are called 
exothermic.  If no heat is allowed to escape from the system, the system will become hot.  
In other reactions, heat has to be supplied to cause the reaction.  Such reactions are 
endothermic. 
 
The heat of reaction is the heat required to effect the reaction, or the heat produced by the 
reaction – some authors use one definition, others use the other.  Here we shall define the 
heat of reaction as the heat required to effect the reaction, so that it is positive for 
endothermic reactions and negative for exothermic reactions. (In your own writing, make 
sure that your meaning is unambiguous – don’t assume that there is some “convention” 
that everyone uses.) If the reaction is carried out at constant pressure (i.e. on an open 
laboratory bench), the heat required to effect the reaction is the increase of enthalpy of 
the system.  In other words, ∆H is positive for an endothermic reaction.  If the reaction 
produces heat, the enthalpy decreases and ∆H is negative.  Heats of reaction are generally 
quoted as molar quantities at a specific temperature (often 25 oC) and pressure (often one 
atmosphere).  The usual convention is to write 
 
    A  +  B  →  C           ∆H = x  J mole−1 
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One can make it yet clearer by specifying the temperature and pressure at which the 
enthalpy of reaction is determined, and whether the reactants are solid (s), liquid (l) or 
gas (g). 
 
If the reaction is carried out at constant volume (in a closed vessel), the heat required to 
effect the reaction is the increase of the internal energy, ∆U.  In either case, in our 
convention (which seems to be the most common one)  ∆H or ∆U is positive for an 
endothermic reaction and negative for an exothermic reaction. 
 
The heat of reaction at constant pressure (∆H) is generally a little larger than at constant 
volume (∆U), though if all reactants are liquid or solid the difference is very small indeed 
and often negligible within the precision to which measurements are made. 
 
 
17.3   The Gibbs Phase Rule 
 
Up to this point the thermodynamical systems that we have been considering have 
consisted of just a single component and, for the most part, just one phase, but we are 
now going to discuss systems consisting of more than one phase and more than one 
component.  The Gibbs Phase Law provides a relation between the number of phases, the 
number of components and the number of degrees of freedom.  But Whoa, there!   We 
have been using several technical terms here:  Phase, Component, Degrees of Freedom.  
We need to describe what these mean. 
 
The state of a system consisting of a single component in a single phase (for example a 
single gas – not a mixture of different gases) can be described by three intensive state 
variables, P, V and T.  (Here V is the molar volume – i.e. the reciprocal of the density in 
moles per unit volume – and is an intensive variable.)  That is, the state of the system is 
described by a point in three-dimensional PVT space.  However, the intensive state 
variables are connected by an equation of state f(P, V, T) = 0, so that the system is 
constrained to be on the two-dimensional surface described by this equation.  Thus, 
because of the constraint, only two intensive state variables suffice to describe the state of 
the system.  Just two of the intensive state variables can be independently varied.  The 
system has two degrees of freedom. 
 
Definition.  A phase is a chemically homogeneous volume, solid, liquid or gas, with a 
boundary separating it from other phases. 
 
Definition.  The number of intensive state variables that can be varied independently 
without changing the number of phases in a system is called the number of degrees of 
freedom of the system. 
 
These are easy.  Defining the number of components in a system needs a bit of care.  I 
give a definition, but what the definition means can, I hope, be made a little clearer by 
giving a few examples. 
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Definition.  The number of components in a system is the least number of constituents 
that are necessary to describe the composition of each phase. 
 
Let us look at a few examples to try and grasp what this means.   
 
First, let us consider an aqueous solution of the chlorides and bromides of sodium and 
potassium co-existing with the crystalline solids NaCl, KCl, NaBr, KBr, illustrated 
schematically in figure XVII.1. 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
There are five phases – four solid and one liquid – but how many components?  There are 
six elements: H, O, Na, K, Cl, B – but the quantities of each cannot be varied 
independently.  There are two constraints: n(H)  =  2n(O),   and    
n(Na)  +  n(K)  =   n(Cl)  +  n(Br).  That is, if we know the number of hydrogen atoms, 
then the number of oxygen atoms is known.  And if we know the number of any three of 
Na, K, Cl or Br, then the fourth is known. Thus the number of constituents that that can 
be independently varied is four.  The number of components is four. 
 
Or again, consider an aqueous solution of a moles of H2SO4 in b moles of water.  There is 
just one phase.  There are three elements: H, O and S.  These may be distributed among 
several species, such as H2O, H2SO4, H3O+, OH−, SO4

− −, but that doesn’t matter.  There 
is just one constraint, namely that 
 
   2(a  +  b)n(H)   =   an(S)  +  (4a  +  b)n(O) . 
 
That is, if we know the number of any two of  H, O or S, we also know the number of the 
third.  The number of components is two. 
 
Or again, consider the reversible reaction 
 

NaBr 

NaCl KCl 

KBr 

Na+

K+

Cl− 

Br− 

H2O 
FIGURE XVII.1 
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   CaCO3 (s)   ↔   CaO (s)  +  CO2 (g) . 
 
If the system is in equilibrium, and we know the numbers of any two of these three 
molecules, the number of the third is determined by the equilibrium constant.  Thus the 
number of components is two. 
 
In each of these three examples, it was easy to state the number of phases and slightly 
more difficult to determine the number of components.  We now need to ask ourselves 
what is the number of degrees of freedom.  This is what the Gibbs phase law is going to 
tell us. 
 
If there are C components in a system, the composition of a particular phase is fully 
described if we know the mole fraction of C − 1 of the components, since the sum of the 
mole fractions of all the components must be 1.  This is so for each of the P phases, so 
that there are in all P(C − 1) mole fractions to be specified, as well as any two of the 
intensive state variables P, V and T.  Thus there are P(C − 1)  +  2 intensive state 
variables to be specified.  (The mole fraction of each component is an intensive state 
variable.)   But not all of these can be independently varied, because the molar Gibbs 
functions of each component are the same in all phases.  (To understand this important 
statement, re-read this argument in Chapter 14 on the Clausius-Clapeyron equation.)  For 
each of the C components there are P − 1 equations asserting the equality of the specific 
Gibbs functions in all the phases.  Thus the number of intensive state variables that can 
be varied independently without changing the number of phases – i.e. the number of  
degrees of freedom, F − is P(C − 1)  +  2  −  C(P − 1), or 
 
    F   =   C  −  P  +  2 .     17.3.1 
 
This is the Gibbs Phase Rule. 
 
In our example of the sodium and potassium salts, in which there were C = 4 components 
distributed through P = 5 phases, there is just one degree of freedom.  No more than one 
intensive state variable can be changed without changing the number of phases. 
 
In our example of sulphuric acid, there was one phase and two components, and hence 
three degrees of freedom. 
 
In the calcium carbonate system, there were three phases and two components, and hence 
just one degree of freedom. 
 
If we have a pure gas, there is one phase and one component, and hence two degrees of 
freedom.  (We can vary any two of P, V or T independently.) 
 
If we have a liquid and its vapour in equilibrium, there are two phases and one 
component, and hence F = 1.  We can vary P or T, but not both independently if the 
system is to remain in equilibrium. If we increase T, the pressure of the vapour that 
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remains in equilibrium with its liquid increases.  The system is constrained to lie on a line 
in PVT space. 
 
If we have a liquid, solid  and gas co-existing in equilibrium, there are three phases and 
one component and hence no degrees of freedom.  The system exists at a single point in 
PVT space, namely the triple point. 
 
I have often been struck by the similarity of the Gibbs phase rule to the topological relation between the 
number of faces F, edges E and vertices V of a solid polyhedron (with no topological holes through it).  
This relation is F = E − V + 2.  E.g.       E     V     F 
  Tetrahedron:       6     4     4  
                             Cube:       12    8     6      
                             Octahedron:              12    6     8 
As far as I know there is no conceivable connection between this and the Gibbs phase rule, and I don’t even 
find it useful as a mnemonic.  I think we just have to put it down as one of life’s little curiosities. 
 
Since writing this section, I have added some additional material on binary and ternary 
alloys, which provide additional examples of the Gibbs phase rule.  I have added these at 
the end of the chapter, as sections 17.9 and 17.10. 
 
 
17.4   Chemical Potential 
 
It is a truth universally acknowledged that, if we add some heat reversibly to a closed 
thermodynamic system at constant volume, its internal energy will increase by 

;dS
S
U

V








∂
∂   or, if we allow it to expand without adding heat, its internal energy will 

increase by .dV
V
U

S








∂
∂    (In most cases the derivative 

SV
U









∂
∂ is negative, so that an 

increase in volume results in a decrease of internal energy.)   If we do both, the increase 
in internal energy will be 
 

    .dV
V
UdS

S
UdU

SV








∂
∂

+







∂
∂

=    17.4.1 

 
By application of the first and second laws of thermodynamics, we find that this can be 
written 
 
    .PdVTdSdU −=      17.4.2 
 
 
 
Likewise, it is a truism that, if we add some heat reversibly to a closed thermodynamic 

system at constant pressure, its enthalpy will increase by ;dS
S
H

P








∂
∂   or, if we increase 
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the pressure on it without adding heat, its enthalpy will increase by .dP
P
H

S








∂
∂    If we do 

both, the increase in internal energy will be 
 

    .dP
P
HdS

S
HdH

SP








∂
∂

+







∂
∂

=    17.4.3 

 
By application of the first and second laws of thermodynamics, we find that this can be 
written 
 
    .VdPTdSdH +=      17.4.4 
 
 
 
Likewise, it is a truism that, if we increase the temperature of a closed thermodynamic 

system at constant volume, its Helmholtz function will increase by ;dT
T
A

V








∂
∂   or, if we 

allow it to expand at constant temperature, its Helmholtz function will increase by 

.dV
V
A

T








∂
∂   (In most cases both of the derivatives are negative, so that an increase in 

temperature at constant volume, or of volume at constant temperature, results in a 
decrease in the Helmholtz function.)  If we do both, the increase in the Helmholtz 
function will be 
 

    .dV
V
AdT

T
AdA

TV








∂
∂

+







∂
∂

=    17.4.5 

 
By application of the first and second laws of thermodynamics, we find that this can be 
written 
 
    .PdVSdTdA −−=     17.4.6 
 
 
 
 
Likewise, it is a truism that, if we increase the temperature of a closed thermodynamic 

system at constant pressure, its Gibbs function will increase by .dT
T
G

P








∂
∂  (In most cases 

the derivative 
PT

G








∂
∂ is negative, so that an increase in temperature at constant pressure 

results in a decrease in the Gibbs function.)  If we increase the pressure on it at constant 
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temperature, its Gibbs function will increase by .dP
P
G

T








∂
∂   If we do both, the increase in 

Gibbs function will be 
 

    .dP
P
GdT

T
GdG

TP








∂
∂

+







∂
∂

=    17.4.7 

 
By application of the first and second laws of thermodynamics, we find that this can be 
written 
 
    .VdPSdTdG +−=     17.4.8 
 
 
 
So much, we are already familiar with. 
 
 
However, we can increase any of these thermodynamical functions of a system without 
adding any heat to it or doing any work on it – merely by adding more matter.  You will 
notice that, in the above statements, I referred to a “closed” thermodynamical system.  By 
a “closed” system, I mean one in which no matter is lost or gained by the system.  But, if 
the system is not closed, adding additional matter to the system obviously increases the 
(total) thermodynamical functions.  For example, consider a system consisting of several 
components.  Suppose that we add dNi moles of component i to the system at constant 
temperature and pressure, by how much would the Gibbs function of the system increase? 
 
We might at first make the obvious reply:  “dNi times the molar Gibbs function of 
component i”.  This might be true if the component were entirely inert and did not 
interact in any way with the other components in the system.  But it is possible that the 
added component might well interact with other components.  It might, for example, shift 
the equilibrium position of a reversible reaction A  +  B  ↔ C  +  D.  The best we can do, 
then, is to say merely that the increase in the (total) Gibbs function of the system would 

be .
,,

i
NPTi

dN
N
G

j









∂
∂ Here, Nj refers to the number of moles of any component other than i.   

 
In a similar manner, if dNi moles of component were added at constant volume without 
adding any heat, the increase in the internal energy of the system would be 

.
,,

i
NSVi

dN
N
U

j









∂
∂   Or if dNi moles of component were added at constant pressure without 

adding any heat, the increase in the enthalpy of the system would be .
,,

i
NSPi

dN
N
H

j









∂
∂   Or 

if dNi moles of component were added at constant temperature and volume, the increase 
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in the Helmholtz function of the system would be .
,,

i
NVTi

dN
N
A

j









∂
∂    If we added a little 

bit more of all components at constant temperature and volume, the increase in the 

Helmholtz function would be ,
,,

∑ 







∂
∂

i
NVTi

dN
N
A

j

 where the sum is over all components. 

 
Thus, if the system is not closed, and we have the possibility of adding or subtracting 
portions of one or more of the components, the formulas for the increases in the 
thermodynamic functions become 
 
 

  ,
,,,,

∑ 







∂
∂

+







∂
∂

+







∂
∂

= i
NSViNSNV

dN
N
UdV

V
UdS

S
UdU

jii

 17.4.9 

 

  ,
,,,,

∑ 







∂
∂

+







∂
∂

+







∂
∂

= i
NPSiNSNP

dN
N
HdP

P
HdS

S
HdH

jii

 17.4.10 

 

  ,
,,,,

∑ 







∂
∂

+







∂
∂

+







∂
∂

= i
NVTiNTNV
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N
AdV

V
AdT

T
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jii

  17.4.11 

 

  .
,,,,

∑ 







∂
∂

+







∂
∂

+







∂
∂

= i
NPTiNTNP

dN
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GdP

P
GdT

T
GdG

jii

  17.4.12 

 
 

The quantity 
jNSViN

U

,,








∂
∂ is the same as 

jNSPiN
H

,,








∂
∂  or as 

jNVTiN
A

,,








∂
∂  or as 

jNPTiN
G

,,








∂
∂ , and it is called the chemical potential of species i, and is usually given the 

symbol µi.  Its SI units are J kmole−1.  (We shall later refer to it as the “partial molar 
Gibbs function” of species i − but that is jumping slightly ahead.)  If we make use of the 
symbol µi, and the other things we know from application of the first and second laws, 
we can write equations 17.4.9 to 17.4.12 as  
 

,iidNVPdTdSdU ∑µ+−=     17.4.13 
 
   ,iidNPVdTdSdH ∑µ++=     17.4.14 
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   iidNVPdSdTdA ∑µ+−−=     17.4.15 
and 
   .iidNPVdSdTdG ∑µ++−=     17.4.16 
 
It will be clear that 

        

.;;

;;;

;;;

;;;
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     17.4.17-28 

 
Since the four thermodynamical functions are functions of state, their differentials are 
exact and their mixed second partial derivatives are equal.  Consequently we have the 
following twelve Maxwell relations: 
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          17.4.29-40 
 
 

 
Refer to equations 17.4.13 to 17.4.16, and we understand that: 
 
If we add dN1 moles of species 1, dN2 moles of species 2,  dN3 moles of species 3, etc., in 
a insulated constant-volume vessel (dS and dV both zero), the increase in the internal 
energy is 
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    .iidNdU ∑µ=      17.4.41 
 
If we do the same in an insulated vessel at constant pressure (for example, open to the 
atmosphere, but in a time sufficiently short so that no significant heat escapes from the 
system, and dS and dP are both zero), the increase in the enthalpy is    
    
    .iidNdH ∑µ=      17.4.42 
 
If we do the same in a closed vessel (e.g. an autoclave or a pressure cooker, so that dV = 
0) in a constant temperature water-bath (dT = 0), the increase in the Helmholtz function is 
 
    .iidNdA ∑µ=      17.4.43 
 
If we do the same at constant pressure (e.g. in an open vessel on a laboratory bench, so 
that dP = 0) and kept at constant temperature (e.g. if the vessel is thin-walled and in a 
constant-temperature water bath, so that dT = 0), the increase in the Gibbs free energy is 
 
    .iidNdG ∑µ=      17.4.44 
 
We have called the symbol µi the chemical potential of component i – but in what sense 
is it a “potential”?  Consider two phases, α and β, in contact.  The Gibbs functions of the 
two phases are Gα and Gβ respectively, and the chemical potential of species i is αµi in α 
and βµi  in β.  Now transfer dNi moles of i from α to β.  The increase in the Gibbs 
function of the system is .iiii dNdN αβ µ−µ   But for a system of two phases to be in 
chemical equilibrium, the increase in the Gibbs function must be zero.  In other words, 
the condition for chemical equilibrium between the two phases is that αβ µ=µ ii  for all 
species, just as the condition for thermal equilibrium is that ,βα = TT  and the condition 
for mechanical equilibrium is that .βα = PP  
 
Students of classical mechanics may see an analogy between equation 17.4.44 and the 
principle of Virtual Work.  One way of finding the condition of static equilibrium in a 
mechanical system is to imagine the system to undergo an infinitesimal change in its 
geometry, and then to calculate the total work done by all the forces as they are displaced 
by the infinitesimal geometrical alteration.  If the system were initially in equilibrium, 
then the work done by the forces, which is an expression of the form iidxF∑ , is zero, 
and this gives us the condition for mechanical equilibrium.  Likewise, if a system is in 
chemical equilibrium, and we make infinitesimal changes dNi, at constant temperature 
and pressure, in the chemical composition, the corresponding change in the Gibbs 
function of the system, iidN∑µ , is zero.  At chemical equilibrium, the Gibbs function is 
a minimum with respect to changes in the chemical composition. 
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17.5 Partial and Mean Molar Quantities, and Partial Pressure  
 
Consider a single phase with several components.   Suppose there are Ni moles of 
component i, so that the total number of moles of all species is 
 
    .∑= iNN       17.5.1 
 
The mole fraction of species i is 
 

    ,
N
Nn i

i =       17.5.2 

 
and of course .1=∑ in  
 
Let V be the volume of the phase.  What will be the increase in volume of the phase if 
you add dNi moles of component i at constant temperature and pressure?   The answer, of 
course, is 
 

    .
,,

i
NPTi

dN
N
VdV

j









∂
∂

=     17.5.3 

 
If you increase the number of moles of all species at constant temperature and pressure, 
the increase in volume will be 
 

    ∑ 







∂
∂

= .
,,

i
NPTi

dN
N
VdV

j

    17.5.4 

 

The quantity 
jNPTiN

V

,,








∂
∂  is called the partial molar volume of species i: 

 

    
jNPTi

i N
V

,,








∂
∂

=v      17.5.5 

 
Let us suppose that the volume of a phase is just proportional to the number of moles of 
all species in the phase.  It might be thought that this is always the case.  It would indeed 
be the case if the phase contained merely a mixture of ideal gases.  However, to give an 
example of a non-ideal case:  If ethanol C2H5OH is mixed with water H2O, the volume of 
the mixture is less than the sum of the separate volumes of water and ethanol.  This is 
because each molecule has an electric dipole moment, and, when mixed, the molecules 
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attract each other and pack together more closely that in the separate liquids.  However, 
let us go back to the ideal, linear case. 
 
In that case, if a volume V contains N moles (of all species) and you add Ni moles of 
species i at constant temperature and pressure, the ratio of the new volume to the old is 
given by 
 

    ,
N

dNN
V

dVV i+
=

+     17.5.6 

 

and hence    ,
N

dN
V
dV i=       17.5.7 

 

or    .
,, N

V
N
V

i
NTPi

j

==







∂
∂ v     17.5.8 

 
Example.    (You’ll need to think long and carefully about the next two paragraphs fully 
to appreciate what are meant by molar volume and partial molar volume.  You’ll need to 
understand them before you can understand more difficult things, such as partial molar 
Gibbs function.) 
 
A volume of 6 m3 contains 1 mole of A, 2 moles of B and 3 moles of C.  Thus the molar 
volumes (not the same thing as the partial molar volumes) of A, B and C are respectively 
6, 3 and 2 m3.   
 
Assume that the mixing is ideal.  In that case, equation 17.5.8 tells us that the partial 
molar volume of each is the total volume divided by the total number of moles.  That is, 
the partial molar volume of each is 1 m3.   You could imagine that, before the component 
were mixed (or if you were to reverse the arrow of time and un-mix the mixture), we had 
1 mole of A occupying 1 m3, 2 moles of B occupying 2 m3 and 3 moles of  C occupying 3 
m3, the molar volume of each being 1 m3.   
 
The mean molar volume per component is 
 

          .
N
V

=v       17.5.9 

 
If the components are ideal, each component has the same partial molar volume, and 
hence the mean molar volume is equal to the partial molar volume of each – but this 
would not necessarily be the case for nonideal mixing. 
 
The total volume of a phase, whether formed by ideal or nonideal mixing, is  
 
    .iiNV v∑=      17.5.10 
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If you divide each side of this equation by N, you arrive at 
 
     
    .iinvv ∑=       17.5.11 
 
 Note that the partial molar volume of a component is not just the volume occupied by the 
component divided by the number of moles.  I.e. the partial molar volume is not the same 
thing as the molar volume.  In our ideal example, the molar volume of the three 
components would be, respectively, 6, 3 and 2 m3. 
 
Another way of looking at it:  In the mixture, Ni moles of species i occupies the entire 
volume V, as indeed does every component, and its molar volume is V/Ni. The pressure of 
the mixture is P. Now remove all but species i from the mixture and then compress it so 
that its pressure is still P, it perforce must be compressed to a smaller volume, and the 
volume of a mole now is its partial molar volume. 
 
 
Let Φ be any extensive quantity (such as S, V, U, H, A, G). 
 
Establish the following notation: 
Φ  =  total extensive quantity for the phase; 
φi  =  partial molar quantity for component i; 
φ   =  mean molar quantity per component. 
 
The partial molar quantity φi  for component i is defined as 
  

    .
,, ijNTPi

i N
≠









∂

Φ∂
=φ      17.5.12 

 
The total value of Φ is given by 
 
    ,iiN φ=Φ ∑      17.5.13 
 
and the mean value per component is 
 
    .iin φ=φ ∑       17.5.14 
 
 
If the extensive quantity Φ that we are considering is the Gibbs function G, then equation 
17.5.12 becomes 
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    .
,, ijNTPi

i N
Gg

≠









∂
∂

=      17.5.15 

 
Then we see, by comparison with equation 17.4.28 that the chemical potential µi of 
component i is nothing other than its partial molar Gibbs function.   
 
Note that this is not just the Gibbs function per mole of the component, any more than the 
partial molar volume is the same as the molar volume. 
   
Recall (Chapter 14 on the Clausius-Clapeyron equation) that, when we had just a single 
component distributed in two phases (e.g. a liquid in equilibrium with its vapour), we 
said that the condition for thermodynamic equilibrium between the two phases was that 
the specific or molar Gibbs functions of the liquid and vapour are equal.   In Section 17.5 
of this chapter, when we are dealing with several components distributed between two 
phases, the condition for chemical equilibrium is that the chemical potential µi of 
component i is the same in the two phases.  Now we see that the chemical potential is 
synonymous with the partial molar Gibbs function, so that the condition for chemical 
equilibrium between two phases is that the partial molar Gibbs function of each 
component is the same in each phase.  Of course, if there is just one component, the 
partial molar Gibbs function is just the same as the molar Gibbs function. 
  
Although pressure is an intensive rather than an extensive quantity, and we cannot talk of 
“molar pressure” or “partial molar pressure”, opportunity can be taken here to define the 
partial pressure of a component in a mixture.  The partial pressure of a component is 
merely the contribution to the total pressure made by that component, so that the total 
pressure is merely 
 
     ,∑= ipP      17.5.16 
 
where pi is the partial pressure of the ith component, 
 
Dalton’s Law of Partial Pressures states that for a mixture of ideal gases, the partial 
pressure of component j is proportional mole fraction of component j.  That is, for a 
mixture of ideal gases, 
 

   .j
i

jj

i

jj n
N

N
N
N

p
p

P
p

====
∑∑

    17.5.17 

 
That is,         .Pnp jj =      17.5.18 
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17.6 The Gibbs-Duhem Relation 
 
In a mixture of several components kept at constant temperature and pressure, the 
chemical potential µi of a particular component (which, under conditions of constant T 
and P, is also its partial molar Gibbs function, gi) depends on how many moles of each 
species i are present.  The Gibbs-Duhem relation tells us how the chemical potentials of 
the various components vary with composition.  Thus: 
 
We have seen that, if we keep the pressure and temperature constant, and we increase the 
number of moles of the components by N1, N2, N3, the increase in the Gibbs function is 
 
    .iidNdG ∑µ=      17.6.1 
 
We also pointed out in section 17.5 that, provided the temperature and pressure are 
constant, the chemical potential µi is just the partial molar Gibbs function, gi, so that the 
total Gibbs function is 
 
    ,iiii NNgG ∑∑ µ==     17.6.2 
 
the sum being taken over all components.  On differentiation of equation 17.7.2 we 
obtain 
 
           .iiii dNdNdG µ+µ= ∑∑     17.6.3 
 
Thus for any process that takes place at constant temperature and pressure, comparison of 
equations 17.6.1 and 17.6.3 shows that 
 
    ,0=µ∑ iidN      17.6.4 
 
which is the Gibbs-Duhem relation.  It tells you how the chemical potentials change with 
the chemical composition of a phase. 
 
 
17.7   Chemical Potential, Pressure, Fugacity 
 
Equation 12.9.11 told us how to calculate the change in the Gibbs function of a mole of 
an ideal gas going from one state to another.  For N moles it would be 
 
 ,)()/ln()(ln 121222 TTNSPPNRTTdCNTdTCNG PP −−+−=∆ ∫∫  17.7.1 
 
where CP and S are molar, and G is total. 
 
Since we know now how to calculate the absolute entropy and also know that the entropy 
at T = 0 is zero, this can be written 
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   constant)ln(),( += PRTNPTG     17.7.2 
 
The “constant” here depends on the temperature, but is not a function of the pressure, 
being in fact the value of the molar Gibbs function extrapolated to the limit of zero 
pressure.  Sometimes it is convenient to write equation 17.7.2 in the form 
 
    ),(ln φ+= PNRTG      17.7.3 
where φ is a function of temperature. 
 
If we have a mixture of several components,  the total Gibbs function is 
 

∑ +=
i

ii pRTNPTG constant)ln(),(                              2
13.7.17  

 
We can now write this in terms of the partial molar Gibbs function of the component i – 
that is to say, the chemical potential of the component i, which is given by 

,)/( ,, ijNTPii NG
≠

∂∂=µ  and the partial pressure of component i.   Thus we obtain 

    .ln)(0
iii pRTT +µ=µ     17.7.4 

or    ).(ln iii pRT φ+=µ      17.7.5 
 
Here I have written the “constant” as ),(0 Tiµ  or as .iRTφ  The constant )(0 Tiµ is the value 
of the chemical potential at temperature T extrapolated to the limit of zero pressure.  If 
the system consists of a mixture of ideal gases, the partial pressure of the ith component 
is related to the total pressure simply by Dalton’s law of partial pressures: 
 
     ,Pnp ii =                see equation  17.5.18 
 
where ni is the mole fraction of the ith component.  In that case, equation 17.7.4 becomes 
 
   .lnln)(0 PRTnRTT iii ++µ=µ      17.7.6 
 
 
and equation 17.7.5 becomes 
 

).ln(ln iii PnRT φ++=µ     17.7.7 
 
However, in a common deviation from ideality, volumes in a mixture are not simply 
additive, and we write equation 17.7.4 in the form 
 
    ,ln)(0

iii fRTT +µ=µ     17.7.8 
 
or equation 17.7.5 in the form 
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    ).(ln iii fRT φ+=µ      17.7.9 
 
where fi is the fugacity of component i. 
 
 
17.8   Entropy of Mixing and Gibbs’ Paradox 
 
In Chapter 7, we defined the increase of entropy of a system by supposing that an 
infinitesimal quantity dQ of heat is added to it at temperature T, and that no irreversible 
work is done on the system.  We then asserted that the increase of entropy of the system 
is ./TdQdS =   If some irreversible work is done, this has to be added to the dQ. 
 
We also pointed out that, in an isolated system any spontaneous transfer of heat from one 
part to another part was likely (very likely!) to be from a hot region to a cooler region, 
and that this was likely (very likely!) to result in an increase of entropy of the closed 
system − indeed of the Universe.   We considered a box divided into two parts, with a hot 
gas in one and a cooler gas in the other, and discussed what we likely (very likely!) to 
happen if the wall between the parts were to be removed.  We considered also the 
situation in which the wall were to separate two gases consisting or red molecules and 
blue molecules.  The two situations seem to be very similar.  A flow of heat is not the 
flow of an “imponderable fluid” called “caloric”. Rather it is the mixing of two groups of 
molecules with initially different characteristics (“fast” and “slow”, or “hot”  and “cold”). 
In either case there is likely (very likely!) to be a spontaneous mixing, or increasing 
randomness, or increasing disorder or increasing entropy.  Seen thus, entropy is seen as a 
measure of the degree of disorder.  In this section we are going to calculate the increase 
on entropy when two different sorts of molecules become mixed, without any reference 
to the flow of heat.  This concept of entropy as a measure of disorder will become 
increasingly apparent if you undertake a study of statistical mechanics. 
 
Consider a box containing two gases, separated by a partition.  The pressure and 
temperature are the same in both compartments.  The left hand compartment contains N1 
moles of gas 1, and the right hand compartment contains N2 moles of gas 2.  The Gibbs 
function for the system is 
 
   )].(ln)(ln[ 2211 φ++φ+= PNPNRTG    17.8.1 
 
Now remove the partition, and wait until the gases become completely mixed, with no 
change in pressure or temperature.  The partial molar Gibbs function of gas 1 is 
 
    )(ln 111 φ+=µ pRT       17.8.2 
 
and the partial molar Gibbs function of gas 2 is 
 
    ).(ln 222 φ+=µ pRT     17.8.3 
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Here the pi are the partial pressures of the two gases, given by 

,and 2211 PnpPnp ==  where the ni are the mole fractions. 
 
The total Gibbs function is now ,2211 µ+µ NN  or 
 
  )].ln(ln)ln(ln[ 222111 φ+++φ++= PnNPnNRTG   17.8.4 
 
The new Gibbs function minus the original Gibbs function is therefore 
 
  ).lnln()lnln( 22112211 nnnnNRTnNnNRTG +=+=∆  17.8.5 
 
This represents a decrease in the Gibbs function, because the mole fractions are less than 
1. 

The new entropy minus the original entropy is ,)(

PT
GS 





∂
∆∂

−=∆  which is 

 
   ).lnln( 2211 nnnnNRS +−=∆     17.8.6 
 
This is positive, because the mole fractions are less than 1. 
 
Similar expressions will be obtained for the increase in entropy if we mix several gases. 
 
Here’s maybe an easier way of looking at the same thing.   (Remember that, in what 
follows, the mixing is presumed to be ideal and the temperature and pressure are constant 
throughout.) 
 
Here is the box separated by a partition: 
 
  
 
 
 
 
 
 
 
 
 
 
Concentrate your attention entirely upon the left hand gas.  Remove the partition.  In the 
first nanosecond, the left hand gas expands to increase its volume by dV , its internal 
energy remaining unchanged ( 0=dU ).  The entropy of the left hand gas therefore 

V1     N1 V2     N2 
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increases according to .1 V
dVRN

T
PdVdS ==    By the time it has expanded to fill the 

whole box, its entropy has increased by )./ln( 11 VVRN   Likewise, the entropy of the right 
hand gas, in expanding from volume V2 to V, has increased by )./ln( 22 VVRN  Thus the 
entropy of the system has increased by )]/ln()/ln([ 2211 VVNVVNR + , and this is equal 
to ].lnln[)]/1ln()/1ln([ 22112211 nnnnNRnnnnRN +−=+  
 
Where there are just two gases, ,1 12 nn −=  so we can conveniently plot a graph of the 
increase in the entropy versus mole fraction of gas 1, and we see, unsurprisingly, that the 
entropy of mixing is greatest when ,

2
1

21 == nn when .6931.02ln NRNRS ==∆  

 
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Mole fraction

∆S/(NR)

FIGURE XVII.1

 
What is n1 if ?2

1 NRS =∆    (I make it n1 =  0.199 710 or, of course, 0.800 290.) 

 
We initially introduced the idea of entropy in Chapter 7 by saying that if a quantity of 
heat dQ is added to a system at temperature T, the entropy increases by dS = dQ/T.  We 
later modified this by pointing out that if, in addition to adding heat, we did some 
irreversible work on the system, that irreversible work was in any case degraded to heat, 
so that the increase in entropy was then ./)( irr TdWdQdS +=    We now see that the 
simple act of mixing two or more gases at constant temperature results in an increase in 
entropy.  The same applies to mixing any substances, not just gases, although the formula 

]lnln[ 2211 nnnnNR +− applies of course just to ideal gases.   We alluded to this in 
Chapter 7, but we have now placed it on a quantitative basis.  As time progresses, two 
separate gases placed together will spontaneously and probably (very probably!) 
irreversibly mix, and the entropy will increase.  It is most unlikely that a mixture of two 
gases will spontaneously separate and thus decrease the entropy. 
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Gibbs’ Paradox arises when the two gases are identical. The above analysis does nothing 
to distinguish between the mixing of two different gases and the mixing of two identical 
gases.  If you have two identical gases at the same temperature and pressure in the two 
compartments, nothing changes when the partition is removed – so there should be no 
change in the entropy.  Within the confines of classical thermodynamics, this remains a 
paradox – which is resolved in the study of statistical mechanics. 
     
 

Now consider a reversible chemical reaction of the form Reactants   ↔   Products 
− and it doesn’t matter which we choose to call the “reactants” and which the “products”. 
Let us suppose that the Gibbs function of a mixture consisting entirely of “reactants” and 
no “products” is less than the Gibbs function of a mixture consisting entirely of 
“products”.  The Gibbs function of a mixture of reactants and products will be less than 
the Gibbs function of either reactants alone or products alone.  Indeed, as we go from 
reactants alone to products alone, the Gibbs function will look something like this: 
 
 
              
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The left hand side shows the Gibbs function of the reactants alone.  The right hand side 
shows the Gibbs function for the products alone.  The equilibrium situation occurs where 
the Gibbs function is a minimum. 
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If the Gibbs function of the reactants were greater than that of the products, the graph 
would look something like: 
     
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17.9   Binary Alloys 
 
(This section is a little out of order, and might be better read after Section 17.3.) 
 
If two metals are melted together, and subsequently cooled and solidified, interesting 
phenomena occur.  In this section we look at the way tin and lead mix.  I do this in an 
entirely schematic and idealized way.  The details are bit more complicated (and 
interesting!)  than I present them here.  For the detailed description and more exact 
numbers, the reader can refer to the specialized literature, such as Constitution of Binary 
Alloys by M. Hansen and K. Anderko and its subsequent Second Supplement by F. A. 
Shunk.  In my simplified description I am assuming that when tin and lead are melted, the 
two liquids are completely miscible, but, when the liquid is cooled, the two metals 
crystallize out separately. The phenomena are illustrated schematically in the figure 
below, which is a graph of melting point versus composition of the alloy at a given 
constant pressure (one atmosphere). 
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The melting point of pure Pb is  327 ºC 
The melting point of pure Sn is  232 ºC 
 
In studying the diagram, let us start at the upper end of the dashed line, where the 
temperature is 350 ºC and we are dealing with a mixture of 70 percent Pb and 30 percent 
Sn (by mole – that is to say, by relative numbers of atoms, not by relative mass).  If you 
review the definitions of phase, component, and degrees of freedom, and the Gibbs phase 
rule, from Section 17.3, you will agree that there is just one phase and one component 
(there’s no need to tell me the percentage of Sn if you have already told me the 
percentage of Pb), and that you can vary two intensive state variables (e.g. temperature 
and pressure) without changing the number of phases.  
 
Now, keeping the composition and pressure constant, let us move down the isopleth (i.e 
down the dashed line of constant composition).  Even after the temperature is lower than 
327 ºC, the mixture doesn’t solidify.  Nothing happens until the temperature is about 289 
ºC.  Below that temperature, crystals of Pb start to solidify.  The full curve represents the 
melting point, or solidification point, of Pb as a function of the composition of the liquid.  
Of course, as some Pb solidifies, the composition of the liquid changes to one of a lesser 
percentage of Pb, and the composition of the liquid moves down the melting point curve. 
As long as the liquid is at a temperature and composition indicated along this curve, there 
is only one remaining degree of freedom (pressure). You cannot change both the 
temperature and the composition without changing the number of phases. As the 
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temperature is lowered further and further, more Pb solidifies, and the composition of the 
liquid moves further and further along the curve to the left, until it reaches the eutectic 
point at a temperature of  183 ºC  and a composition of  26% Pb.  Below that temperature, 
both Pb and Sn crystallize out. 
 
If we had started with a composition of less than 26% Pb,  Sn would have started to 
crystallize out as soon as we had reached the left hand curve, and the composition of the 
liquid would move along that curve to the right until it had reached the eutectic point. 
 
Below, we show similar (highly idealized and schematic) eutectic curves for Pb-Bi and 
for Bi-Sn.  (For more precise descriptions, and more exact numbers, see the literature, 
such as the references cited above).  The data for these three alloys are: 
 
For the pure metals: 
 
  Melting point      Pb      327 ºC 
                              Bi       271 
                              Sn       232 
 
Sn-Pb    Eutectic   183 ºC     26% Pb 
Pb-Bi    Eutectic   125 ºC     56% Bi 
Bi-Sn    Eutectic   139 ºC     57% Sn 
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17.10 Ternary Alloys 
 
In this section we look at what happens with an alloy of three metals, and we shall use as 
an example Pb-Bi-Sn.  Our description is merely illustrative of the principles; for more 
exact details, see the specialized literature. 
 
To illustrate the phase equilibria of an alloy of these three metals, I have pasted the 
eutectic diagrams of the previous section to the faces of a triangular prism, as shown 
below.  The vertical ordinate is the temperature. 
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On each of the three faces only two of the metals are present.  The situation where all 
three metals are present on comparable quantities would be illustrated by a surface inside 
the prism, but creating this inner surface is unfortunately beyond my skills.  Anywhere 
above the surface outlined by the curves on each face is completely liquid.   Below it one 
or other of the constituent metals solidifies.  The surface goes down to a deep well, 
terminating in a eutectic temperature well below the 125 ºC  of the Pb-Bi  eutectic.    
 
In lieu of building a nice three-dimensional model, the next best thing might be to take a 
horizontal slice through the prism at constant temperature.  If I do that at, say, 200ºC, the 
ternary phase diagram might look something like this: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
You can imagine what happens as you gradually lower the temperature.  First a bit of Pb 
solidifies out.   Then a bit of Bi.  Lastly a bit of Sn.  You have to try and imagine what 
this ternary diagram would look like as you lower the temperature.  Eventually the 
solidification parts spread out from the corners of the triangle, and meet at a single 
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Bi 
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liquid 
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  + liquid 

solid Bi 
  + liquid 
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  + liquid 
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eutectic point where there are no degrees of freedom.  Below that temperature, all is 
solid, whatever the composition. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


