

Fig. 7.4. Here are plots of the first three exponential integrals, $E_1(x)$, $E_2(x)$, and $E_3(x)$. At x = 0, E_1 is unbounded, E_2 is unity, and E_3 is 0.5. At large x, all the functions behave the same.

Exponential integrals

Let us repeat the equation for the exponential integrals, $E_n(x)$, of the *n*th order

$$E_n(x) = \int_1^\infty \frac{\exp(-xt)}{t^n} dt.$$
 (7.19)

The value at the origin is found directly by setting x = 0, leaving

$$E_n(0) = \int_1^\infty \frac{\mathrm{d}t}{t^n} = \frac{1}{n-1}.$$

The first three functions are shown in Fig. 7.4, where it can be seen that $E_1(0)$ is infinite, $E_2(0)$ is unity, and $E_3(0)$ is one half.